全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Robotics  2013 

An Artificial Neural Network Based Robot Controller that Uses Rat’s Brain Signals

DOI: 10.3390/robotics2020054

Keywords: brain machine interface, learning and adaptive systems, radial basis function neural controllers

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brain machine interface (BMI) has been proposed as a novel technique to control prosthetic devices aimed at restoring motor functions in paralyzed patients. In this paper, we propose a neural network based controller that maps rat’s brain signals and transforms them into robot movement. First, the rat is trained to move the robot by pressing the right and left lever in order to get food. Next, we collect brain signals with four implanted electrodes, two in the motor cortex and two in the somatosensory cortex area. The collected data are used to train and evaluate different artificial neural controllers. Trained neural controllers are employed online to map brain signals and transform them into robot motion. Offline and online classification results of rat’s brain signals show that the Radial Basis Function Neural Networks (RBFNN) outperforms other neural networks. In addition, online robot control results show that even with a limited number of electrodes, the robot motion generated by RBFNN matched the motion generated by the left and right lever position.

References

[1]  Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173, doi:10.1109/TRE.2000.847807.
[2]  Millán, J.D.R.; Rupp, R.; Müller-Putz, G.R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A; Leeb, R.; et al. Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front. Neurosci. 2010, 4, 1–15.
[3]  Taylor, D.M.; Tillery, S.I.H.; Schwartz, A.B. Direct cortical control of 3D neuroprosthetic devices. Science 2002, 296, 1829–1832, doi:10.1126/science.1070291.
[4]  Carmena, J.M.; Lebedev, M.A.; Crist, R.E.; O’Doherty, J.E.; Santucci, D.M.; Dimitrov, D.F.; Patil, P.G.; Henriquez, C.S.; Nicolelis, M.A.L. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003, 1, e42, doi:10.1371/journal.pbio.0000042.
[5]  Velliste, M.; Perel, S.; Spalding, M.C.; Whitford, A.S.; Schwartz, A.B. Cortical control of a prosthetic arm for self-feeding. Nature 2008, 453, 1098–1101, doi:10.1038/nature06996.
[6]  Chapin, J.K.; Moxon, K.A.; Markowitz, R.S.; Nicolelis, M.A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 1999, 2, 664–670, doi:10.1038/10223.
[7]  Wessberg, J.; Stambaugh, C.R.; Kralik, J.D.; Beck, P.D.; Laubach, M.; Chapin, J.K.; Kim, J.; Biggs, S.J.; Srinivasan, M.A.; Nicolelis, M.A. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 2000, 408, 361–365.
[8]  Yanagisawa, T.; Hirata, M.; Saitoh, Y.; Kishima, H.; Matsushita, K.; Goto, T.; Fukuma, R.; Yokoi, H.; Kamitani, Y.; Yoshimine, T. Electrocorticographic control of a prosthetic arm in paralyzed patients. Ann. Neurol. 2011, 71, 353–361.
[9]  Hinterberger, T.; Veit, R.; Wilhelm, B.; Weiskopf, N.; Vatine, J.-J.; Birbaumer, N. Neuronal mechanisms underlying control of a brain-computer interface. Eur. J. Neurosci. 2005, 21, 3169–3181.
[10]  Ang, K.K.; Guan, C.; Chua, K.S.G.; Ang, B.T.; Kuah, C.; Wang, C.; Phua, K.S.; Chin, Z.Y.; Zhang, H. A Clinical Study of Motor Imagery-Based Brain-Computer Interface for Upper Limb Robotic Rehabilitation. In Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Minneapolis, MN, USA, 3–6 September 2009; pp. 5981–5984.
[11]  Majima, K.; Kamitani, Y. An outlook on the present and future of brain-machine interface research. Brain Nerve. 2011, 63, 241–246.
[12]  Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 2008, 25, 41–56.
[13]  Wu, W.; Chen, Z.; Gao, S.; Brown, E.N. A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG. NeuroImage 2011, 56, 1929–1945, doi:10.1016/j.neuroimage.2011.03.032.
[14]  Capi, G. Real robots controlled by brain signals—A BMI approach. Int. J. Adv. Intell. 2010, 2, 25–35.
[15]  Xie, T.; Yu, H.; Wilamowski, B. Comparison between Traditional Neural Networks and Radial Basis Function Networks. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics (ISIE), Gdansk, Poland, 27–30 June 2011; pp. 1194–1199.
[16]  Haykin, S. Neural Networks: A Comprehensive Foundation; Griffin, J., Ed.; Prentice Hall: Upper Saddle River, NJ, US, 1999; Volume 13, pp. 409–412.
[17]  MacKay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447, doi:10.1162/neco.1992.4.3.415.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413