全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MIPHENO: data normalization for high throughput metabolite analysis

DOI: 10.1186/1471-2105-13-10

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization), an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening. Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of population parameters (p < 2.2 × 10-16) and a modest but significant (p < 2.2 × 10-16) improvement in area under the receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score). Analysis of the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/ webcite) showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based statistic.Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range of high throughput screenings and the code is freely available as Additional file 1 as well as through an R package in CRAN.High-throughput screening studies in biology and other fields are increasingly popular due to ease of sample tracking and decreasing technology costs. These experimental setups enable researchers to obtain numerous measurements across multiple individuals in parallel (e.g. gene expression and diverse plate-based assays) or in series (e.g. metabolomics and proteomics platforms). The large number of measurements collected often comes at the cost of measurement precision or the overall power of detect

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413