全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epicardium Formation as a Sensor in Toxicology

DOI: 10.3390/jdb1020112

Keywords: epicardium, proepicardium, TCDD, AHR, heart regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zebrafish ( Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.

References

[1]  Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; Gillespie, C.; Go, A.; Greenlund, K.; Haase, N.; Hailpern, S.; Ho, P.M.; Howard, V.; Kissela, B.; Kittner, S.; Lackland, D.; Lisabeth, L.; Marelli, A.; McDermott, M.M.; Meigs, J.; Mozaffarian, D.; Mussolino, M.; Nichol, G.; Roger, V.L.; Rosamond, W.; Sacco, R.; Sorlie, P.; Stafford, R.; Thom, T.; Wasserthiel-Smoller, S.; Wong, N.D.; Wylie-Rosett, J. Executive summary: Heart disease and stroke statistics--2010 update: A report from the American Heart Association. Circulation 2010, 121, 948–954, doi:10.1161/CIRCULATIONAHA.109.192666.
[2]  Tsibiribi, P.; Bui-Xuan, C.; Bui-Xuan, B.; Lombard-Bohas, C.; Duperret, S.; Belkhiria, M.; Tabib, A.; Maujean, G.; Descotes, J.; Timour, Q. Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum. Exp. Toxicol. 2006, 25, 305–309, doi:10.1191/0960327106ht628oa.
[3]  Yeh, E.T.; Tong, A.T.; Lenihan, D.J.; Yusuf, S.W.; Swafford, J.; Champion, C.; Durand, J.B.; Gibbs, H.; Zafarmand, A.A.; Ewer, M.S. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 2004, 109, 3122–3131, doi:10.1161/01.CIR.0000133187.74800.B9.
[4]  Guldner, N.W.; Bastian, F.; Weigel, G.; Zimmermann, H.; Maleika, M.; Scharfschwerdt, M.; Rohde, D.; Sievers, H.H. Nanocoating with titanium reduces iC3b- and granulocyte-activating immune response against glutaraldehyde-fixed bovine pericardium: A new technique to improve biologic heart valve prosthesis durability? J. Thorac. Cardiovasc. Surg. 2012, 143, 1152–1159, doi:10.1016/j.jtcvs.2011.10.076.
[5]  Guldner, N.W.; Jasmund, I.; Zimmermann, H.; Heinlein, M.; Girndt, B.; Meier, V.; Fluss, F.; Rohde, D.; Gebert, A.; Sievers, H.H. Detoxification and endothelialization of glutaraldehyde-fixed bovine pericardium with titanium coating: A new technology for cardiovascular tissue engineering. Circulation 2009, 119, 1653–1660, doi:10.1161/CIRCULATIONAHA.108.823948.
[6]  Neethling, W.M.; Glancy, R.; Hodge, A.J. Mitigation of calcification and cytotoxicity of a glutaraldehyde-preserved bovine pericardial matrix: Improved biocompatibility after extended implantation in the subcutaneous rat model. J. Heart Valve Dis. 2010, 19, 778–785.
[7]  Abejie, B.A.; Chung, E.H.; Nesto, R.W.; Kales, S.N. Grand rounds: asbestos-related pericarditis in a boiler operator. Environ. Health Perspect. 2008, 116, 86–89.
[8]  Imanishi, S.; Arita, M. Electrophysiologic properties differ in the ventricular endocardium and epicardium of the Japanese monkey. J. Electrocardiol. 1987, 20, 185–192, doi:10.1016/S0022-0736(87)80015-8.
[9]  Staszewska-Woolley, J.; Woolley, G. Participation of the kallikrein-kinin-receptor system in reflexes arising from neural afferents in the dog epicardium. J. Physiol. 1989, 419, 33–44.
[10]  Lukas, A.; Antzelevitch, C. Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current. Circulation 1993, 88, 2903–2915, doi:10.1161/01.CIR.88.6.2903.
[11]  Han, W.; Barr, S.C.; Pacioretty, L.M.; Gilmour, R.F., Jr. Restoration of the transient outward potassium current by noradrenaline in chagasic canine epicardium. J. Physiol. 1997, 500, 75–83.
[12]  Pagan-Carlo, L.A.; Garcia, L.A.; Hutchison, J.L.; Buettner, G.R.; Kerber, R.E. Captopril lowers coronary venous free radical concentration after direct current cardiac shocks. Chest 1999, 116, 484–487, doi:10.1378/chest.116.2.484.
[13]  Kharin, S.N.; Krandycheva, V.V.; Strelkova, M.V.; Tsvetkova, A.S.; Shmakov, D.N. Doxorubicin-induced changes of ventricular repolarization heterogeneity: Results of a chronic rat study. Cardiovasc. Toxicol. 2012, 12, 312–317, doi:10.1007/s12012-012-9172-0.
[14]  Allison, P.; Huang, T.; Broka, D.; Parker, P.; Barnett, J.V.; Camenisch, T.D. Disruption of canonical TGFbeta-signaling in murine coronary progenitor cells by low level arsenic. Toxicol. Appl. Pharmacol. 2013, doi:10.1016/j.taap.2013.04.035.
[15]  Olivey, H.E.; Mundell, N.A.; Austin, A.F.; Barnett, J.V. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev. Dyn. 2006, 235, 50–59, doi:10.1002/dvdy.20593.
[16]  Sabir, I.N.; Li, L.M.; Jones, V.J.; Goddard, C.A.; Grace, A.A.; Huang, C.L. Criteria for arrhythmogenicity in genetically-modified Langendorff-perfused murine hearts modelling the congenital long QT syndrome type 3 and the Brugada syndrome. Pflugers Arch. 2008, 455, 637–651.
[17]  Tu, W.; Niu, L.; Liu, W.; Xu, C. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. Ecotoxicol. Environ. Saf. 2013, 89, 189–195, doi:10.1016/j.ecoenv.2012.11.031.
[18]  Li, X.; Ma, Y.; Li, D.; Gao, X.; Li, P.; Bai, N.; Luo, M.; Tan, X.; Lu, C.; Ma, X. Arsenic impairs embryo development via down-regulating Dvr1 expression in zebrafish. Toxicol. Lett. 2012, 212, 161–168, doi:10.1016/j.toxlet.2012.05.011.
[19]  Incardona, J.P.; Linbo, T.L.; Scholz, N.L. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol. Appl. Pharmacol. 2011, 257, 242–249, doi:10.1016/j.taap.2011.09.010.
[20]  Valesio, E.G.; Zhang, H.; Zhang, C. Exposure to the JNK inhibitor SP600125 (anthrapyrazolone) during early zebrafish development results in morphological defects. J. Appl. Toxicol. 2013, 33, 32–40, doi:10.1002/jat.1708.
[21]  Lin, C.C.; Hui, M.N.; Cheng, S.H. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol. Appl. Pharmacol. 2007, 222, 159–168, doi:10.1016/j.taap.2007.04.013.
[22]  Reimers, M.J.; Flockton, A.R.; Tanguay, R.L. Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish. Neurotoxicol. Teratol. 2004, 26, 769–781, doi:10.1016/j.ntt.2004.06.012.
[23]  Lefebvre, K.A.; Trainer, V.L.; Scholz, N.L. Morphological abnormalities and sensorimotor deficits in larval fish exposed to dissolved saxitoxin. Aquat. Toxicol. (Amsterdam, Netherlands) 2004, 66, 159–170, doi:10.1016/j.aquatox.2003.08.006.
[24]  Hu, N.; Sedmera, D.; Yost, H.J.; Clark, E.B. Structure and function of the developing zebrafish heart. Anat. Rec. 2000, 260, 148–157, doi:10.1002/1097-0185(20001001)260:2<148::AID-AR50>3.0.CO;2-X.
[25]  Lee, R.K.; Stainier, D.Y.; Weinstein, B.M.; Fishman, M.C. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 1994, 120, 3361–3366.
[26]  Stainier, D.Y. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2001, 2, 39–48, doi:10.1038/35047564.
[27]  Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91, 279–288, doi:10.1093/cvr/cvr098.
[28]  Serluca, F.C. Development of the proepicardial organ in the zebrafish. Dev. Biol. 2008, 315, 18–27, doi:10.1016/j.ydbio.2007.10.007.
[29]  Manner, J.; Perez-Pomares, J.M.; Macias, D.; Munoz-Chapuli, R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs 2001, 169, 89–103, doi:10.1159/000047867.
[30]  Manner, J.; Schlueter, J.; Brand, T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev. Dyn. 2005, 233, 1454–1463, doi:10.1002/dvdy.20487.
[31]  Lie-Venema, H.; van den Akker, N.M.; Bax, N.A.; Winter, E.M.; Maas, S.; Kekarainen, T.; Hoeben, R.C.; deRuiter, M.C.; Poelmann, R.E.; Gittenberger-de Groot, A.C. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci. World J. 2007, 7, 1777–1798, doi:10.1100/tsw.2007.294.
[32]  Gittenberger-de Groot, A.C.; Winter, E.M.; Bartelings, M.M.; Jose Goumans, M.; Deruiter, M.C.; Poelmann, R.E. The arterial and cardiac epicardium in development, disease and repair. Differentiation 2012, 84, 41–53, doi:10.1016/j.diff.2012.05.002.
[33]  Riley, P.R. An epicardial floor plan for building and rebuilding the mammalian heart. Curr. Top. Dev. Biol. 2012, 100, 233–251, doi:10.1016/B978-0-12-387786-4.00007-5.
[34]  Smart, N.; Riley, P.R. The epicardium as a candidate for heart regeneration. Future Cardiol. 2012, 8, 53–69, doi:10.2217/fca.11.87.
[35]  Smart, N.; Dube, K.N.; Riley, P.R. Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul. Pharmacol. 2012.
[36]  Hill, A.J.; Teraoka, H.; Heideman, W.; Peterson, R.E. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 2005, 86, 6–19, doi:10.1093/toxsci/kfi110.
[37]  Wells, P.; Pinder, A. The respiratory development of Atlantic salmon. II. Partitioning of oxygen uptake among gills, yolk sac and body surfaces. J. Exp. Biol. 1996, 199, 2737–2744.
[38]  Kopp, R.; Schwerte, T.; Pelster, B. Cardiac performance in the zebrafish breakdance mutant. J. Exp. Biol. 2005, 208, 2123–2134, doi:10.1242/jeb.01620.
[39]  Stainier, D.Y.; Fouquet, B.; Chen, J.N.; Warren, K.S.; Weinstein, B.M.; Meiler, S.E.; Mohideen, M.A.; Neuhauss, S.C.; Solnica-Krezel, L.; Schier, A.F.; Zwartkruis, F.; Stemple, D.L.; Malicki, J.; Driever, W.; Fishman, M.C. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development (Cambridge, England) 1996, 123, 285–292.
[40]  Thackaberry, E.A.; Nunez, B.A.; Ivnitski-Steele, I.D.; Friggins, M.; Walker, M.K. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on murine heart development: Alteration in fetal and postnatal cardiac growth, and postnatal cardiac chronotropy. Toxicol. Sci. 2005, 88, 242–249, doi:10.1093/toxsci/kfi302.
[41]  Cheung, M.O.; Gilbert, E.F.; Peterson, R.E. Cardiovascular teratogenicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the chick embryo. Toxicol. Appl. Pharmacol. 1981, 61, 197–204, doi:10.1016/0041-008X(81)90409-9.
[42]  Peterson, R.E.; Theobald, H.M.; Kimmel, G.L. Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit. Rev. Toxicol. 1993, 23, 283–335, doi:10.3109/10408449309105013.
[43]  Carney, S.A.; Chen, J.; Burns, C.G.; Xiong, K.M.; Peterson, R.E.; Heideman, W. Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol. Pharmacol. 2006, 70, 549–561, doi:10.1124/mol.106.025304.
[44]  King-Heiden, T.C.; Mehta, V.; Xiong, K.M.; Lanham, K.A.; Antkiewicz, D.S.; Ganser, A.; Heideman, W.; Peterson, R.E. Reproductive and developmental toxicity of dioxin in fish. Mol. Cell. Endocrinol. 2012, 354, 121–138, doi:10.1016/j.mce.2011.09.027.
[45]  Kopf, P.G.; Walker, M.K. Overview of developmental heart defects by dioxins, PCBs, and pesticides. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 276–285, doi:10.1080/10590500903310195.
[46]  Cronk, C.E.; Pelech, A.N.; Malloy, M.E.; McCarver, D.G. Excess birth prevalence of Hypoplastic Left Heart syndrome in eastern Wisconsin for birth cohorts 1997–1999. Birth Defects Res. 2004, 70, 114–120, doi:10.1002/bdra.20007.
[47]  Kuehl, K.S.; Loffredo, C.A. A cluster of hypoplastic left heart malformation in Baltimore, Maryland. Pediatric Cardiol. 2006, 27, 25–31, doi:10.1007/s00246-005-0859-x.
[48]  Flesch-Janys, D.; Berger, J.; Gurn, P.; Manz, A.; Nagel, S.; Waltsgott, H.; Dwyer, J.H. Exposure to polychlorinated dioxins and furans (PCDD/F) and mortality in a cohort of workers from a herbicide-producing plant in Hamburg, Federal Republic of Germany. Am. J. Epidemiol. 1995, 142, 1165–1175.
[49]  Bertazzi, P.A.; Bernucci, I.; Brambilla, G.; Consonni, D.; Pesatori, A.C. The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ. Health Perspect. 1998, 106 (Suppl. 2), 625–633.
[50]  Lanham, K.A.; Peterson, R.E.; Heideman, W. Sensitivity to dioxin decreases as zebrafish mature. Toxicol. Sci. 2012, 127, 360–370, doi:10.1093/toxsci/kfs103.
[51]  Henry, T.R.; Spitsbergen, J.M.; Hornung, M.W.; Abnet, C.C.; Peterson, R.E. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 1997, 142, 56–68, doi:10.1006/taap.1996.8024.
[52]  Dong, W.; Teraoka, H.; Tsujimoto, Y.; Stegeman, J.J.; Hiraga, T. Role of aryl hydrocarbon receptor in mesencephalic circulation failure and apoptosis in zebrafish embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 2004, 77, 109–116.
[53]  Antkiewicz, D.S.; Burns, C.G.; Carney, S.A.; Peterson, R.E.; Heideman, W. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci. 2005, 84, 368–377, doi:10.1093/toxsci/kfi073.
[54]  Belair, C.D.; Peterson, R.E.; Heideman, W. Disruption of erythropoiesis by dioxin in the zebrafish. Dev. Dyn. 2001, 222, 581–594, doi:10.1002/dvdy.1213.
[55]  Mehta, V.; Peterson, R.E.; Heideman, W. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure Prevents Cardiac Valve Formation in Developing Zebrafish. Toxicol. Sci. 2008, 104, 303–311.
[56]  Plavicki, J.; Hofsteen, P.; Peterson, R.E.; Heideman, W. Dioxin inhibits zebrafish epicardium and proepicardium development. Toxicol. Sci. 2013, 131, 558–567, doi:10.1093/toxsci/kfs301.
[57]  Garrity, D.M.; Childs, S.; Fishman, M.C. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome. Development 2002, 129, 4635–4645.
[58]  Liu, J.; Stainier, D.Y. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circulation Res. 2010, 106, 1818–1828, doi:10.1161/CIRCRESAHA.110.217950.
[59]  Hofsteen, P.; Mehta, V.; Kim, M.S.; Peterson, R.E.; Heideman, W. TCDD inhibits heart regeneration in adult zebrafish. Toxicol. Sci. 2013, 132, 211–221, doi:10.1093/toxsci/kfs329.
[60]  Thackaberry, E.A.; Jiang, Z.; Johnson, C.D.; Ramos, K.S.; Walker, M.K. Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: Modulation of cell cycle and extracellular matrix genes. Toxicol. Sci. 2005, 88, 231–241, doi:10.1093/toxsci/kfi301.
[61]  Jenkins, S.J.; Hutson, D.R.; Kubalak, S.W. Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Dev. Dyn. 2005, 233, 1091–1101, doi:10.1002/dvdy.20393.
[62]  Acharya, A.; Baek, S.T.; Huang, G.; Eskiocak, B.; Goetsch, S.; Sung, C.Y.; Banfi, S.; Sauer, M.F.; Olsen, G.S.; Duffield, J.S.; Olson, E.N.; Tallquist, M.D. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 2012, 139, 2139–2149, doi:10.1242/dev.079970.
[63]  Smith, C.L.; Baek, S.T.; Sung, C.Y.; Tallquist, M.D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circulation Res. 2011, 108, e15–e26, doi:10.1161/CIRCRESAHA.110.235531.
[64]  Muller, P.S.; Schulz, R.; Maretto, S.; Costello, I.; Srinivas, S.; Bikoff, E.; Robertson, E. The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis. Development 2011, 138, 1297–1308, doi:10.1242/dev.059386.
[65]  Muto, A.; Calof, A.L.; Lander, A.D.; Schilling, T.F. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of Cornelia de Lange Syndrome. PLoS Biol. 2011, 9, e1001181, doi:10.1371/journal.pbio.1001181.
[66]  Mitchell, I.C.; Brown, T.S.; Terada, L.S.; Amatruda, J.F.; Nwariaku, F.E. Effect of vascular cadherin knockdown on zebrafish vasculature during development. PLoS One 2010, 5, e8807.
[67]  Pruvot, B.; Quiroz, Y.; Voncken, A.; Jeanray, N.; Piot, A.; Martial, J.A.; Muller, M. A panel of biological tests reveals developmental effects of pharmaceutical pollutants on late stage zebrafish embryos. Reprod. Toxicol. 2012, 34, 568–583, doi:10.1016/j.reprotox.2012.07.010.
[68]  Gurvich, N.; Berman, M.G.; Wittner, B.S.; Gentleman, R.C.; Klein, P.S.; Green, J.B. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. Faseb J. 2005, 19, 1166–1168.
[69]  Reinecke, H.; Minami, E.; Zhu, W.Z.; Laflamme, M.A. Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ. Res. 2008, 103, 1058–1071, doi:10.1161/CIRCRESAHA.108.180588.
[70]  Malki, Q.; Sharma, N.D.; Afzal, A.; Ananthsubramaniam, K.; Abbas, A.; Jacobson, G.; Jafri, S. Clinical presentation, hospital length of stay, and readmission rate in patients with heart failure with preserved and decreased left ventricular systolic function. Clin. Cardiol. 2002, 25, 149–152, doi:10.1002/clc.4960250404.
[71]  Bolli, P.; Chaudhry, H.W. Molecular physiology of cardiac regeneration. Ann. N. Y. Acad. Sci. 2010, 1211, 113–126, doi:10.1111/j.1749-6632.2010.05814.x.
[72]  Smart, N.; Bollini, S.; Dube, K.N.; Vieira, J.M.; Zhou, B.; Riegler, J.; Price, A.N.; Lythgoe, M.F.; Davidson, S.; Yellon, D.; Pu, W.T.; Riley, P.R. Myocardial regeneration: expanding the repertoire of thymosin beta4 in the ischemic heart. Ann. N. Y. Acad. Sci. 2012, 1269, 92–101, doi:10.1111/j.1749-6632.2012.06708.x.
[73]  Poss, K.D.; Wilson, L.G.; Keating, M.T. Heart regeneration in zebrafish. Science 2002, 298, 2188–2190, doi:10.1126/science.1077857.
[74]  Kikuchi, K.; Holdway, J.E.; Werdich, A.A.; Anderson, R.M.; Fang, Y.; Egnaczyk, G.F.; Evans, T.; Macrae, C.A.; Stainier, D.Y.; Poss, K.D. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature 2010, 464, 601–605, doi:10.1038/nature08804.
[75]  Jopling, C.; Sleep, E.; Raya, M.; Marti, M.; Raya, A.; Belmonte, J.C. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010, 464, 606–609, doi:10.1038/nature08899.
[76]  Lepilina, A.; Coon, A.N.; Kikuchi, K.; Holdway, J.E.; Roberts, R.W.; Burns, C.G.; Poss, K.D. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006, 127, 607–619, doi:10.1016/j.cell.2006.08.052.
[77]  Choi, W.Y.; Poss, K.D. Cardiac regeneration. Curr. Top. Dev. Biol. 2012, 100, 319–344, doi:10.1016/B978-0-12-387786-4.00010-5.
[78]  Kikuchi, K.; Holdway, J.E.; Major, R.J.; Blum, N.; Dahn, R.D.; Begemann, G.; Poss, K.D. Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev. Cell 2011, 20, 397–404, doi:10.1016/j.devcel.2011.01.010.
[79]  Di Meglio, F.; Castaldo, C.; Nurzynska, D.; Romano, V.; Miraglia, R.; Montagnani, S. Epicardial cells are missing from the surface of hearts with ischemic cardiomyopathy: A useful clue about the self-renewal potential of the adult human heart? Int. J. Cardiol. 2010, 145, e44–e46, doi:10.1016/j.ijcard.2008.12.137.
[80]  Milan, D.J.; Jones, I.L.; Ellinor, P.T.; MacRae, C.A. In vivo recording of adult zebrafish electrocardiogram and assessment of drug-induced QT prolongation. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H269–H273, doi:10.1152/ajpheart.00960.2005.
[81]  Park, M.J.; Lee, K.R.; Shin, D.S.; Chun, H.S.; Kim, C.H.; Ahn, S.H.; Bae, M.A. Predicted drug-induced bradycardia related cardio toxicity using a zebrafish in vivo model is highly correlated with results from in vitro tests. Toxicol. Lett. 2013, 216, 9–15, doi:10.1016/j.toxlet.2012.10.018.
[82]  Parng, C.; Seng, W.L.; Semino, C.; McGrath, P. Zebrafish: a preclinical model for drug screening. Assay Drug Dev. Technol. 2002, 1, 41–48, doi:10.1089/154065802761001293.
[83]  Kikuchi, K.; Gupta, V.; Wang, J.; Holdway, J.E.; Wills, A.A.; Fang, Y.; Poss, K.D. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development (Cambridge, England) 2011, 138, 2895–2902, doi:10.1242/dev.067041.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413