全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

What do We Know about Neonatal Cognition?

DOI: 10.3390/bs3010154

Keywords: newborn, perception, cognition, memory

Full-Text   Cite this paper   Add to My Lib

Abstract:

Research on neonatal cognition has developed very recently in comparison with the long history of research on child behavior. The last sixty years of research have provided a great amount of evidence for infants’ numerous cognitive abilities. However, only little of this research concerns newborn infants. What do we know about neonatal cognition? Using a variety of paradigms, researchers became able to probe for what newborns know. Amongst these results, we can distinguish several levels of cognitive abilities. First, at the perceptual or sensory level, newborns are able to process information coming from the social world and the physical objects through all their senses. They are able to discriminate between object shapes and between faces; that is, they are able to detect invariants, remember and recognize them. Second, newborns are able to abstract information, to compare different inputs and to match them across different sensory modalities. We will argue that these two levels can be considered high-level cognitive abilities: they constitute the foundations of human cognition. Furthermore, while some perceptual competencies can stem from the fetal period, many of these perceptual and cognitive abilities cannot be a consequence of the environment surrounding the newborn before birth.

References

[1]  Clifton, R.K. Lessons from infants: 1996–2000. Infancy 2001, 2, 285–309, doi:10.1207/S15327078IN0203_1.
[2]  Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859.
[3]  Gesell, A.; Thompson, H. Learning and growth in identical infant twins. Genet. Psychol. Monogr. 1929, 6, 1–123.
[4]  Watson, B.J. Psychological Care of Infant and Child; W. W. Norton and Co.: New York, NY, USA, 1928.
[5]  Gesell, A.; Thompson, H.; Amatruda, C.S. Infant Behavior: Its Genesis and Growth; McGraw-Hill Book Company: New York, NY, USA, 1934; Volume viii.
[6]  Bayley, N. Bayley Scales of Infant Development, 2nd ed.; Psychological Corporation: San Antonio, TX, USA, 1993.
[7]  Piaget, J. Les origines de l’intelligence chez l’enfant; Delachaux et Niestlé: Neuchatel, Switzerland, 1935. (; RKP.: London, UK, 1970).
[8]  Piaget, J. La construction du réel chez l’enfant; Delachaux et Niestlé: Neuchatel, Switzerland, 1937. (; Basic Books: New York, NY, USA, 1954).
[9]  Fantz, R.L. Pattern vision in young infants. The Psychol. Rec. 1958, 8, 43–47.
[10]  Fantz, R. The origin of form perception. Sci. Am. 1961, 204, 66–72, doi:10.1038/scientificamerican0561-66.
[11]  Kuhn, T.S. The Structure of Scientific Revolutions; University of Chicago: Chicago, CA, USA, 1962.
[12]  Aguiar, A.; Baillargeon, R. 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychol. 1999, 39, 116–157, doi:10.1006/cogp.1999.0717.
[13]  Stone, L.J.; Smith, H.T.; Murphy, L.B. The Competent Infant Research and Commentary; Taylor and Francis Group: London, UK, 1974.
[14]  Mehler, J.; Fox, R. Neonate cognition: Beyond the Blooming Buzzing Confusion; Lawrence Erlbaum Assoc Inc.: London, UK, 1985.
[15]  Spelke, E.S.; Newport, E.L. Nativism, Empiricism, and the development of knowledge. In Handbook of Child Psychology: Theoretical Models of Human Development, 5th; Damon, W., Lerner, R.M., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1998; Volume 1, pp. 275–340.
[16]  Bremner, J.G. Infancy; Basil Blakwell, Ltd.: Oxford, UK, 1988.
[17]  Slater, A.; Morison, V.; Rose, D. Locus of habituation in the human newborn. Perception 1983, 12, 593–598.
[18]  Pascalis, O.; de Haan, M. Recognition memory and novelty preference: What Model. Prog. Infancy Res. 2003, 3, 95–120.
[19]  Rovee-Collier, C.; Barr, R. Infant learning and memory. In Handbook of Infant Development; Bremner, G., Fogel, A., Eds.; Blackwell Publishing: Malden, MA, USA, 2001; pp. 139–168.
[20]  Slater, A.; Morison, V.; Somers, M. Orientation discrimination and cortical function in the human newborn. Perception 1988, 17, 597–602.
[21]  Goren, C.C.; Sarty, M.; Wu, P.Y.K. Visual Following and Pattern Discrimination of Face-like Stimuli by Newborn Infants. Pediatrics 1975, 56, 544–549.
[22]  Slater, A. Visual perception in the newborn infant: Issues and debates. Intellectica 2002, 34, 57–76.
[23]  Valenza, E.; Leo, I.; Gava, L.; Simion, F. Perceptual completion in newborn human infants. Child Dev. 2006, 77, 1810–1821, doi:10.1111/j.1467-8624.2006.00975.x.
[24]  Antell, S.E.; Keating, D.P. Perception of numerical invariance in neonates. Child Dev. 1983, 54, 695–701, doi:10.2307/1130057.
[25]  Bisazza, A.; Piffer, L.; Serena, G.; Agrillo, C. Ontogeny of Numerical Abilities in Fish. PLoS ONE 2010, 5, e15516.
[26]  Macchi, C.V.; Turati, C.; Simion, F. Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychol. Sci. 2004, 15, 379–383, doi:10.1111/j.0956-7976.2004.00688.x.
[27]  Johnson, M.H.; Morton, J. Biology and Cognitive Development: The Case of Face Recognition; Blackwell: Oxford, UK, 1991.
[28]  Mondloch, C.J.; Lewis, T.L.; Budreau, D.R.; Maurer, D.; Dannemiller, J.L.; Stephens, B.R.; Kleiner-Gathercoal, K.A. Face perception during early infancy. Psychol. Sci. 1999, 10, 419–422, doi:10.1111/1467-9280.00179.
[29]  Valenza, E.; Simion, F.; Cassia, V.M.; Umiltà, C. Face preference at birth. J. Exp. Psychol. Hum. 1996, 22, 892–903, doi:10.1037/0096-1523.22.4.892.
[30]  Rigato, S.; Menon, E.; Johnson, M.H.; Faraguna, D.; Farroni, T. Direct gaze may modulate face recognition in newborns. Infant Child Dev. 2011, 20, 20–34, doi:10.1002/icd.684.
[31]  Farroni, T.; Massaccesi, S.; Pividori, D.; Johnson, M.H. Gaze Following in Newborns. Infancy 2004, 5, 39–60, doi:10.1207/s15327078in0501_2.
[32]  Guellai, B.; Streri, A. Cues for early social skills: Direct gaze modulates newborns’ recognition of talking faces. PLoS ONE 2011, 6, e18610, doi:10.1371/journal.pone.0018610.
[33]  Farroni, T.; Johnson, M.H.; Menon, E.; Zulian, L.; Faraguna, D.; Csibra, G. Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. P. Natl. Acad. Sci. USA 2005, 102, 17245–17250.
[34]  Coulon, M.; Guellai, B.; Streri, A. Recognition of unfamiliar talking faces at birth. Int. J. Behav. Dev. 2011, 35, 282–287, doi:10.1177/0165025410396765.
[35]  Streri, A.; Lhote, M.; Dutilleul, S. Haptic perception in newborns. Dev. Sci. 2000, 3, 319–327.
[36]  Lejeune, F.; Audeoud, F.; Marcus, L.; Streri, A.; Debillon, T.; Gentaz, E. The manual habituation and discrimination of shapes in preterm human infants from 33 to 34 + 6 post-conceptional age. PLoS ONE 2010, 5, e9108.
[37]  Jusczyk, P.W. The Discovery of Spoken Language; MIT press: Cambridge, MA, USA, 1997.
[38]  Aslin, R.N.; Pisoni, D.B.; Jusczyk, P.W. Auditory development and speech perception in infancy. In Handbook of Child Psychology: Infancy and Developmental Psychobiology; Wiley: New York, NY, USA, 1983; Volume 25, pp. 73–687.
[39]  Aslin, R.N.; Jusczyk, P.W.; Pisoni, D.B. Speech and auditory processing during infancy: Constraints on and precursors to language. In Handbook of Child Psychology: Cognition, Perception, and Language; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1998; Volume 2, pp. 147–198.
[40]  Granier-Deferre, C.; Bassereau, S.; Ribeiro, A.; Jacquet, A.-Y.; DeCasper, A.J. A Melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE 2011, 6, e17304.
[41]  Shahidullah, S.; Hepper, P.G. Frequency discrimination by the fetus. Early Hum. Dev. 1994, 36, 13–26, doi:10.1016/0378-3782(94)90029-9.
[42]  Lecanuet, J.P.; Graniere-Deferre, C.; Jacquet, A.Y.; DeCasper, A.J. Fetal discrimination of low-pitched musical notes. Dev. Psychobiol. 2000, 36, 29–39, doi:10.1002/(SICI)1098-2302(200001)36:1<29::AID-DEV4>3.0.CO;2-J.
[43]  Lecanuet, J.-P.; Granier-Deferre, C.; Jacquet, A.-Y.; Capponi, I.; Ledru, L. Prenatal discrimination of a male and a female voice uttering the same sentence. Early Dev. Parenting 1993, 2, 217–228, doi:10.1002/edp.2430020405.
[44]  DeCasper, A.J.; Fifer, W.P. Of human bonding: Newborns preference for their mothers’ voice. Science 1980, 208, 1174–1176.
[45]  Mehler, J.; Jusczyk, P.; Lambertz, G.; Halsted, N.; Bertoncini, J.; Amiel-Tison, C. A precursor of language acquisition in young infants. Cognition 1988, 29, 143–178, doi:10.1016/0010-0277(88)90035-2.
[46]  Moon, C.; Cooper, R.P.; Fifer, W.P. Two-day-olds prefer their native language. Infant Behav. Dev. 1993, 16, 495–500, doi:10.1016/0163-6383(93)80007-U.
[47]  Swain, I.U.; Zelazo, P.R.; Clifton, R.K. Newborn infants’ memory for speech sounds retained over 24 hours. Dev. Psychol. 1993, 29, 312–323, doi:10.1037/0012-1649.29.2.312.
[48]  N??t?nen, R.; Gaillard, A.W.K.; M?ntysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 1978, 42, 313–329, doi:10.1016/0001-6918(78)90006-9.
[49]  Cheour, M.T.H.; Kraus, N. Mismatch negativity (MMN) as a tool for investigating auditory discrimination and sensory memory in infants and children. Clin. Neurophysiol. 2000, 111, 4–16, doi:10.1016/S1388-2457(99)00191-1.
[50]  Cheour, M.; Imada, T.; Taulu, S.; Ahonen, A.; Salonen, J.; Kuhl, P. Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp. Neurol. 2004, 190, 44–51, doi:10.1016/j.expneurol.2004.06.030.
[51]  Ruusuvirta, T.; Huotilainen, M.; Fellman, V.; N??t?nen, R. Newborn human brain identifies repeated auditory feature conjunctions of low sequential probability. Eur. J. Neurosci. 2004, 20, 2819–2821, doi:10.1111/j.1460-9568.2004.03734.x.
[52]  Alho, K.; Sainio, K.; Sajaniemi, N.; Reinikainen, K.; N??t?nen, R. Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroen. Clin. Neuro./Evoked Potentials Section 1990, 77, 151–155, doi:10.1016/0168-5597(90)90031-8.
[53]  Sambeth, A.; Pakarinen, S.; Ruohio, K.; Fellman, V.; van Zuijen, T.L.; Huotilainen, M. Change detection in newborns using a multiple deviant paradigm: A study using magnetoencephalography. Clin. Neurophysiol. 2009, 120, 530–538.
[54]  Pe?a, M.; Maki, A.; Kovac?i?, D.; Dehaene-Lambertz, G.; Koizumi, H.; Bouquet, F.; Mehler, J. Sounds and silence: An optical topography study of language recognition at birth. PNAS 2003, 100, 11702–11705.
[55]  Martynova, O.; Kirjavainen, J.; Cheour, M. Mismatch negativity and late discriminative negativity in sleeping human newborns. Neurosci. Lett. 2003, 340, 75–78, doi:10.1016/S0304-3940(02)01401-5.
[56]  Coulon, M.; Hemimou, C.; Streri, A. Effects of Seeing and Hearing Vowels on Neonatal Facial Imitation. Infancy 2012, doi:10.1111/infa.12001.
[57]  Kushnerenko, E.; Cheour, M.; Ceponiene, R.; Fellman, V.; Renlund, M.; Soininen, K.; Alku, P.; Kosknen, M.; Sainio, K.; N??t?nen, R. Central auditory processing of durational changes in complex speech patterns by newborns: An event-related brain potential study. Dev. Neuropsychol. 2001, 19, 83–97, doi:10.1207/S15326942DN1901_6.
[58]  Cheour, M.; ??poniené, R.; Lepp?nen, P.; Alho, K.; Kujala, T.; Renlund, M.; Fellman, V. The auditory sensory memory trace decays rapidlyin newborns. Scand. J. Psychol. 2002, 43, 33–39, doi:10.1111/1467-9450.00266.
[59]  Slater, A.; Mattock, A.; Brown, E. Size constancy at birth: Newborn infants’ responses to retinal and real size. J. Exp. Child Psychol. 1990, 49, 314–322, doi:10.1016/0022-0965(90)90061-C.
[60]  Granrud, C.E. Size constancy in newborn human infants. Invest. Ophth.Vis. Sci. 1987, 28, 5.
[61]  Holway, A.H.; Boring, E.G. Determinants of Apparent Visual Size with Distance Variant. Am. J. Psychol. 1941, 54, 21–37, doi:10.2307/1417790.
[62]  Wertheimer, M. Psychomotor coordination of auditory and visual space at birth. Science 1961, 134, 1692.
[63]  Clifton, R.K.; Perris, E.E.; Bullinger, A. Infants’ perception of auditory space. Dev. Psychol. 1991, 27, 187–197, doi:10.1037/0012-1649.27.2.187.
[64]  Held, R.; Birch, E.; Gwiazda, J. Stereoacuity of human infants. PNAS 1980, 77, 5572–5574, doi:10.1073/pnas.77.9.5572.
[65]  Jandó, G.; Mikó-Baráth, E.; Markó, K.; Hollódy, K.; T?r?k, B.; Kovacs, I. Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. PNAS 2012, 109, 11049–11052.
[66]  Slater, A.; Morison, V.; Rose, D. Habituation in the newborn. Infant Behav. Dev. 1984, 7, 183–200, doi:10.1016/S0163-6383(84)80057-0.
[67]  Gibson, E.J. Principles of Perceptual Learning and Development; Appleton-Century-Crofts: New York, NY, USA, 1969.
[68]  Schaal, B.; Marlier, L.; Soussignan, R. Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behav. Neurosci. 1998, 112, 1438–1449, doi:10.1037/0735-7044.112.6.1438.
[69]  Lewkowicz, D.J.; Turkewitz, G. Intersensory Interaction in Newborns: Modification of Visual Preferences Following Exposure to Sound. Child Dev. 1981, 52, 827–832, doi:10.2307/1129083.
[70]  Lewkowicz, D.J. The development of intersensory temporal perception: An epigenetic systems/limitations view. Psychol. Bull. 2000, 126, 281–308, doi:10.1037/0033-2909.126.2.281.
[71]  Bahrick, L.E. Infants’ intermodal perception of two levels of temporal structure in natural events. Infant Behav. Dev. 1987, 10, 387–416, doi:10.1016/0163-6383(87)90039-7.
[72]  Bahrick, L.E. Intermodal learning in infancy: Learning on the basis of two kinds of invariant relations in audible and visible events. Child Dev. 1988, 59, 197–209, doi:10.2307/1130402.
[73]  Bahrick, L.E.; Pickens, J.N. Amodal relations: The basis for intermodal perception and learning in infancy. In The Development of Intersensory Perception: Comparative Perspectives; Lewkowicz, D.J., Lickliter, R., Eds.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1994; pp. 205–233.
[74]  Morrongiello, B.A.; Fenwick, K.D.; Chance, G. Crossmodal learning in newborn infants: Inferences about properties of auditory-visual events. Infant Behav. Dev. 1998, 21, 543–553, doi:10.1016/S0163-6383(98)90028-5.
[75]  Slater, A.; Brown, E.; Badenoch, M. Intermodal perception at birth: Newborn infants’ memory for arbitrary auditory–visual pairings. Early Dev. Parenting 1997, 6, 99–104, doi:10.1002/(SICI)1099-0917(199709/12)6:3/4<99::AID-EDP149>3.0.CO;2-M.
[76]  Izard, V.; Sann, C.; Spelke, E.S.; Streri, A. Newborn infants perceive abstract numbers. PNAS 2009, 106, 10382–10385.
[77]  Bruno, M.; Mandelbaum, E. Lockels answer to Molyneux’s thought experiment. Hist. Phil. Q. 2010, 27, 165–180.
[78]  Gallagher, S. Neurons and neonates: reflections on theMolyneuxProblem. In How the Body Shapes the Mind; Gallagher, S., Ed.; Oxford University Press: Oxford, UK, 2006; pp. 45–48.
[79]  Streri, A.; Gentaz, E. Cross-modal recognition of shape from hand to eyes in human newborns. Somatosen. Mot. Res. 2003, 20, 13–18, doi:10.1080/0899022031000083799.
[80]  Streri, A.; Gentaz, E. Cross-modal recognition of shape from hand to eyes and handedness in human newborns. Neuropsychologia 2004, 42, 1365–1369, doi:10.1016/j.neuropsychologia.2004.02.012.
[81]  Sann, C.; Streri, A. Perception of object shape and texture in human newborns: evidence from cross-modal transfer tasks. Dev. Sci. 2007, 10, 399–410, doi:10.1111/j.1467-7687.2007.00593.x.
[82]  Elman, J.L.; Bates, E.; Johnson, M.H.; Karmiloff-Smith, A.; Parisi, D.; Plunkett, K. Rethinking Innateness: A Connectionist Perspective on Development; MIT Press: Cambridge, MA, USA, 1996.
[83]  McClelland, J.; Rumelhart, J.; Group, P.R. Parallel Distributed Processing: Explanations in the Microstructure Of Cognition: Psychological And Biological Models; MIT Press: Cambridge, MA, 1986; Volume 2.
[84]  Xu, F.; Arriaga, R.I. Number discrimination in 10-month-old infants. Brit. J. Dev. Psychol. 2007, 25, 103–108, doi:10.1348/026151005X90704.
[85]  Streri, A.; Pêcheux, M.-G. Tactual Habituation and Discrimination of Form in Infancy: A Comparison with Vision. Child Dev. 1986, 57, 100–104, doi:10.2307/1130641.
[86]  Streri, A. Crossmodal interactions in the human newborn. In Multisensory Development; Brember, A.J., Lewkowics, K.J., Spence, C., Eds.; University Press: Oxford, UK, 2012; pp. 88–112.
[87]  Berkes, P.; Orbán, G.; Lengyel, M.; Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 2011, 331, 83–87, doi:10.1126/science.1195870.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133