全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

The Importance of Microtopography and Nurse Canopy for Successful Restoration Planting of the Slow-Growing Conifer Pilgerodendron uviferum

DOI: 10.3390/f4010085

Keywords: active restoration, conifer bog forests, Chiloé Island, North Patagonia, seedling growth, Sphagnum

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recent studies have shown that, owing to a lack of seed trees, the natural rate of recovery of fire-disturbed bog forests previously dominated by the endemic and endangered conifer Pilgerodendron uviferum (D. Don) Florin is extremely slow. Hence, increasing the number of seed trees in the landscape through restoration planting could remove the principal biotic filter, limiting recovery of these forests. Here, we analyzed how the success of restoration plantings may be improved through the choice or manipulation of microsites in P. uviferum forests on Chiloé Island in North Patagonia. For this purpose, we manipulated microtopography in water-logged sites in bogs (mounds, flat terrain, mineral soil) and changed canopy conditions (gaps, semi-open, closed canopy) in upland sites with better drainage. In bogs, there was no significant effect of microtopography on growth and survival of P. uviferum plantings. However, fluorescence measurements indicated lower stress in seedlings established on mounds. Seedlings in upland areas established beneath a nurse canopy had lower mortality and higher relative shoot growth, foliar nutrients, photosynthetic light use efficiency and chlorophyll fluorescence values than those planted in the open. This indicates that seedlings of the slow growing P. uviferum can tolerate extremely wet conditions, yet suffer from stress when grown in the open. Here, the removal of canopy appeared to have also removed or reduced mycorrhizal networks for seedlings, leading to poorer nutrition and growth. Based on these results, recommendations for restoration plantings in highly degraded P. uviferum forests are presented.

References

[1]  Hobbs, R.J.; Norton, D.A. Towards a conceptual framework for restoration ecology. Restor. Ecol. 1996, 4, 93–110, doi:10.1111/j.1526-100X.1996.tb00112.x.
[2]  Benayas, J.M.R.; Bullock, J.M.; Newton, A.C. Creating woodland islets to reconcile ecological restoration, conservation and agricultural land use. Front. Ecol. Environ. 2008, 6, 329–336, doi:10.1890/070057.
[3]  Morrison, E.B.; Lindell, C.A. Active or passive forest restoration? Assessing restoration alternatives with avian foraging behavior. Restor. Ecol. 2011, 19, 170–177, doi:10.1111/j.1526-100X.2010.00725.x.
[4]  Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563, doi:10.1016/j.foreco.2010.07.004.
[5]  Lara, A.; Donoso, C.; Escobar, B.; Rovere, A.; Premoli, A.; Soto, D.P.; Bannister, J.R. Pilgerodendron uviferum (D. Don) Florin. In Las Especies Arbóreas de los Bosques Templados de Chile y Argentina, Autoecología; Donoso, C., Ed.; Marisa Cuneo: Valdivia, Chile, 2006; pp. 82–91.
[6]  Bannister, J.R.; Donoso, P.J.; Bauhus, J. Persistence of the slow growing conifer Pilgerodendron uviferum in old-growth and fire-disturbed southern bog forests. Ecosystems 2012, 15, 1158–1172, doi:10.1007/s10021-012-9574-7.
[7]  Bannister, J.R.; Lara, A.; Le Quesne, C. Estructura y dinámica de bosques de Pilgerodendron uviferum afectados por incendios en la Cordillera de la Costa de la Isla Grande de Chiloé. Bosque 2008, 29, 33–43.
[8]  Walter, K.S.; Gillet, H.J. 1997 IUCN Red List of Threatened Plants; IUCN: Cambridge, UK, 1998.
[9]  Hobbs, R.J.; Norton, D.A. Ecological Filters, Thresholds and Gradients in Resistance to Ecosystem Reassembly. In Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice; Temperton, V.M., Hobbs, R.J., Nuttle, T., Halle, S., Eds.; Island Press: Washington, DC, USA, 2004; pp. 72–95.
[10]  Bannister, J.R.; Wagner, S.; Donoso, P.J.; Bauhus, J. The importance of seed trees for the passive restoration of disturbed Pilgerodendron uviferum bog forests in Northern Patagonia. 2013. Unpublished work.
[11]  Armesto, J.J.; Bustamante-Sánchez, M.A.; Díaz, M.F.; González, M.E.; Holz, A.; Nu?ez-Avila, M.; Smith-Ramirez, C. Fire Disturbance Regimes, Ecosystem Recovery and Restoration Strategies in Mediterranean and Temperate Regions of Chile. In Fire Effects on Soils and Restoration Strategies; Cerda, A., Robichaud, P.R., Eds.; Science Publishers: Enfield, NH, USA, 2009; pp. 537–564.
[12]  Carmona, M.R.; Aravena, J.C.; Bustamante-Sanchez, M.A.; Celis-Diez, J.L.; Charrier, A.; Díaz, I.A.; Díaz-Forestier, J.; Díaz, M.F.; Gaxiola, A.; Gutiérrez, A.G.; et al. Estación biológica Senda Darwin: Investigación ecológica de largo plazo en la interfase ciencia-sociedad. Rev. Chil. Hist. Nat. 2010, 83, 113–142.
[13]  Lara, A.; Echeverría, C.; Thiers, O.; Huss, E.; Escobar, B.; Tripp, K.; Zamorano, C.; Altamirano, A. Restauración ecológica de coníferas longevas: el caso del alerce (Fitzroya cupressoides) en el sur de Chile. In Restauración de Bosques en América Latina; González-Espinosa, M., Rey-Benayas, J.M., Ramírez-Marcial, N., Eds.; Mundi-Prensa México: México City, México, 2008; pp. 40–55.
[14]  H?rnberg, G.; Ohlson, M.; Zackrisson, O. Influence of bryophytes and microrelief conditions on Picea abies seed regeneration patterns in boreal old-growth swamp forests. Can. J. For. Res. 1997, 27, 1015–1023, doi:10.1139/x97-045.
[15]  Ohlson, M. Growth and nutrient characteristics in bog and fen populations of Scots pine (Pinus sylvestris). Plant Soil 1995, 172, 235–245, doi:10.1007/BF00011326.
[16]  Díaz, M.; Armesto, J.J. Limitantes físicos y bióticos de la regeneración arbórea en matorrales sucesionales de la Isla Grande de Chiloé, Chile. Rev. Chil. Hist. Nat. 2007, 80, 13–26.
[17]  Rydin, H.; Jeglum, J.K. The Biology of Peatlands; Oxford University Press: Oxford, UK, 2006.
[18]  Cruz, G.; Lara, A. Tipificación, cambio de estructura y normas de manejo para Ciprés de las Guaitecas (Pilgerodendron uviferum D. Don Florin) en la isla Grande de Chiloé. Forest Engineer Thesis, Universidad de Chile, Santiago, Chile, 1981.
[19]  Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621, doi:10.1093/jxb/erh196.
[20]  Walters, R.G. Towards an understanding of photosynthetic acclimation. J. Exp. Bot. 2005, 56, 435–447, doi:10.1093/jxb/eri060.
[21]  Givnish, T. Adaptation to sun and shade: A whole-plant perspective. Funct. Plant Biol. 1988, 15, 63–92.
[22]  Holz, A.; Veblen, T.T. The amplifying effects of humans on fire regimes in temperate rainforests in western Patagonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 311, 82–92, doi:10.1016/j.palaeo.2011.08.008.
[23]  Di Castri, F.; Hajek, E. Bioclimatología de Chile; Vicerrectoría Académica de la Universidad Católica de Chile: Santiago, Chile, 1976.
[24]  Bannister, J.R.; Vidal, O.J.; Teneb, E.; Sandoval, V. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecol. 2012, 37, 500–509, doi:10.1111/j.1442-9993.2011.02312.x.
[25]  Pérez, C.A.; Armesto, J.J.; Torrealba, C.; Carmona, M.R. Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol. 2008, 28, 591–600, doi:10.1046/j.1442-9993.2003.01315.x.
[26]  Villagrán, C. Late quaternary vegetation of southern Isla Grande de Chiloé, Chile. Quat. Res. 1988, 29, 294–306.
[27]  Donoso, C.; Sandoval, V.; Grez, R.; Rodríguez, J. Dynamics of Fitzroya cupressoides forests in southern Chile. J. Veg. Sci. 1993, 4, 303–312, doi:10.2307/3235588.
[28]  Parent, S.; Messier, C. A simple and efficient method to estimate microsite light availability under a forest canopy. Can. J. For. Res. 1996, 26, 151–154, doi:10.1139/x26-017.
[29]  K?nig, N. Handbuch Forstliche Analytik: Gessellschaft für Analytik; Bundesministerium für Verbraucherschutz, Ern?hrung und Landwirtschaft: Bonn, Germany, 2005.
[30]  Genty, B.; Briantais, J.M. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92, doi:10.1016/S0304-4165(89)80016-9.
[31]  Hurlbert, S.H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 1984, 54, 187–211.
[32]  SPSS Inc. SPSS Statistics for Windows, version 17, SPSS Inc. Chicago, IL, USA, 2008.
[33]  R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2012.
[34]  Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450, doi:10.2307/2404783.
[35]  Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668, doi:10.1093/jexbot/51.345.659.
[36]  Simard, M.; Lecomte, N.; Bergeron, Y.; Bernier, P.Y.; Paré, D. Forest productivity decline caused by successional paludification of Boreal soils. Ecol. Appl. 2007, 17, 1619–1637, doi:10.1890/06-1795.1.
[37]  Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003, 157, 399–422, doi:10.1046/j.1469-8137.2003.00698.x.
[38]  Simard, S.W. The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. Forest Ecol. Manag. 2009, 258, S95–S107.
[39]  Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 2012, 26, 39–60, doi:10.1016/j.fbr.2012.01.001.
[40]  Coopman, R.E.; Reyes-Díaz, M.; Brice?o, V.F.; Corcuera, L.J.; Cabrera, H.M.; Bravo, L.A. Changes during early development in photosynthetic light acclimation capacity explain the shade to sun transition in Nothofagus nitida. Tree Physiol. 2008, 28, 1561–1571, doi:10.1093/treephys/28.10.1561.
[41]  Dirección Meteorológica de Chile (DMC). Estadística Climatológica: Tomo III; Dirección Meteorológica de Chile: Santiago, Chile, 2001.
[42]  Roderick, M.; Farquhar, G.; Berry, S.; Noble, I. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 2001, 129, 21–30, doi:10.1007/s004420100760.
[43]  Alton, P.B.; North, P.R.; Los, S.O. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob. Chang. Biol. 2007, 13, 776–787, doi:10.1111/j.1365-2486.2007.01316.x.
[44]  Reich, P.; Oleksyn, J.; Wright, I. Leaf phosphorus influences the photosynthesis-nitrogen relation: A cross-biome analysis of 314 species. Oecologia 2009, 160, 207–212.
[45]  Mercado, L.M.; Pati?o, S.; Domingues, T.F.; Fyllas, N.M.; Weedon, G.P.; Sitch, S.; Quesada, C.A.; Phillips, O.L.; Arag?o, L.E.; Malhi, Y.; et al. Variations in Amazon forest productivity correlated with foliar nutrients and modeled rates of photosynthetic carbon supply. Phil. Trans. R. Soc. B 2011, 366, 3316–3329, doi:10.1098/rstb.2011.0045.
[46]  Silva-Rodriguez, E.A.; Verdugo, C.; Alejandro Aleuy, O.; Sanderson, J.G.; Ortega-Solis, G.R.; Osorio-Zuniga, F.; Gonzalez-Acuna, D. Evaluating mortality sources for the vulnerable Pudu Pudu puda in Chile: Implications for the conservation of a threatened deer. Oryx 2010, 44, 97–103, doi:10.1017/S0030605309990445.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413