全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality

DOI: 10.3390/f4020279

Keywords: mountain pine beetle, forest fragmentation, density dependent, insect outbreak

Full-Text   Cite this paper   Add to My Lib

Abstract:

The current outbreak of mountain pine beetle, Dendroctonus ponderosae Hopkins, has led to extensive tree mortality in British Columbia and the western United States. While the greatest impacts of the outbreak have been in British Columbia, ongoing impacts are expected as the outbreak continues to spread eastward towards Canada’s boreal and eastern pine forests. Successful mitigation of this outbreak is dependent on understanding how the beetle’s host selection behaviour is influenced by the patchwork of tree mortality across the landscape. While several studies have shown that selective mechanisms operate at the individual tree level, less attention has been given to beetles’ preference for variation in spatial forest patterns, namely forest fragmentation, and if such preference changes with changing population conditions. The objective of this study is to explore the influence of fragmentation on the location of mountain pine beetle caused mortality. Using a negative binomial regression model, we tested the significance of a fragmentation measure called the Aggregation Index for predicting beetle-caused tree mortality in the central interior of British Columbia, Canada in 2000 and 2005. The results explain that mountain pine beetle OPEN ACCESS Forests 2013, 4 280 exhibit a density-dependent dynamic behaviour related to forest patterns, with fragmented forests experiencing greater tree mortality when beetle populations are low (2000). Conversely, more contiguous forests are preferred when populations reach epidemic levels (2005). These results reinforce existing findings that bark beetles exhibit a strong host configuration preference at low population levels and that such pressures are relaxed when beetle densities are high.

References

[1]  Mountain Pine Beetle Infestation Information; British Columbia Ministry of Forests, Lands and Natural Resource Operations: Victoria, Canada, 2013. Available online: http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/facts.htm (accessed on 17 January 2013).
[2]  Pederson, L. How Serious is the Mountain Pine Beetle Problem? From a Timber Supply Perspective. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelowna, Canada, 30–31 October 2003; Shore, T.L., Brooks, J.E., Stone, J.E., Eds.; Canadian Forest Service: Victoria, Canada, 2004. BC-X-398; pp. 10–20.
[3]  De la Giroday, H.-M.C.; Carroll, A.B.; Aukema, B.H. Breach of the northern Rocky Mountain geoclimatic barrier: Initiation of range expansion by the mountain pine beetle. J. Biogeogr. 2012, 39, 1112–1123, doi:10.1111/j.1365-2699.2011.02673.x.
[4]  Cullingham, C.I.; Cooke, J.E.K.; Dang, S.; Davis, C.S.; Cooke, B.J.; Coltman, D.W. Mountain pine beetle host-range expansion threatens the boreal forest. Mol. Ecol. 2011, 20, 2157–2171.
[5]  Safranyik, L.; Carroll, A.L.; Régnière, J.; Langor, D.W.; Riel, W.G.; Shore, T.L.; Peter, B.; Cooke, B.J.; Nealis, V.G.; Taylor, S.W. Potential for range expansion of mountain pine beetle into the boreal forests of North America. Can. Entomol. 2010, 142, 415–442, doi:10.4039/n08-CPA01.
[6]  Meddens, A.J.H.; Hicke, J.A.; Ferguson, C.A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States. Ecol. Appl. 2012, 22, 1876–1891, doi:10.1890/11-1785.1.
[7]  Trzcinski, M.K.; Reid, M.L. Effect of management on the spatial spread of mountain pine beetle (Dendroctonus ponderosae) in Banff National Park. For. Ecol. Manag. 2008, 256, 1418–1426, doi:10.1016/j.foreco.2008.07.003.
[8]  Amman, G.D. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. J. Econ. Entomol. 1972, 65, 138–140.
[9]  Reid, R.W. Biology of the mountain pine beetle, Dentroctonus ponderosae Hopkins, in the east Kootenay region of British Columbia. III. Interaction between the beetle and its host, with emphasis on brood mortality and survival. Can. Entomol. 1963, 95, 225–238.
[10]  Safranyik, L.; Shrimpton, D.M.; Whitney, H.S. Management of Lodgepole Pine to Reduce Losses to Mountain Pine Beetle; Canadian Forest Service: Victoria, Canada, 1974; p. 24.
[11]  Kautz, M.; Schopf, R.; Osher, J. The “sun-effect”: Microclimatic alterations predispose forest edges to bark beetle infestations. Eur. J. For. Res. 2013. in press.
[12]  Borden, J.H.; Ryker, L.J.; Chong, L.J.; Pierce, H.D.; Johnson, B.D.; Oehlschlager, A.C. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera:Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Can. J. For. Res. 1987, 17, 118–128, doi:10.1139/x87-023.
[13]  Wood, D.L. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Ann. Rev.Entomol. 1982, 27, 411–446, doi:10.1146/annurev.en.27.010182.002211.
[14]  Raffa, K.F.; Aukema, B.H.; Erbilgin, N.; Klepzig, K.D.; Walling, K.F. Interactions among conifer terpenoids and bark beetles across multiple levels of scale: An attempt to understand links between population patterns and physiological processes. Adv. Phytochem. 2005, 39, 80–118.
[15]  Carroll, A.L.; Safranyik, L. The Bionomics of the Mountain Pine Beetle in Lodgepole Pine Forests: Establishing a Context. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelowna, Canada, 30–31 October 2003; Shore, T.L., Brooks, J.E., Stone, J.E., Eds.; Canadian Forest Service: Victoria, Canada, 2004. BC-X-398; pp. 21–32.
[16]  Rudinsky, J.A.; Morgan, M.E.; Libbey, L.M.; Putnam, T.B. Antiaggregative-rivalry pheromone of the mountain pine beetle, and a new arrestant of the southern pine beetle. Env. Entomol. 1974, 3, 90–98.
[17]  Safranyik, L.; Caroll, A.C. The Biology and Epidemiology of the Mountain Pine Beetle in Lodgepole Pine Forests. In The Mountain Pine Beetle: A Synthesis of Biology, Management, and Impacts on Lodgepole Pine; Safranyik, L., Wilson, W.R., Eds.; Canadian Forest Service: Victoria, Canada, 2006; pp. 3–66.
[18]  Boone, C.K.; Aukema, B.H.; Bohlmann, J.; Carroll, A.L.; Raffa, K.F. Efficacy of tree defense physiology varies with bark beetle population density: A basis for positive feedback in eruptive species. Can. J. For. Res. 2011, 41, 1174–1188, doi:10.1139/x11-041.
[19]  Waring, R. Characteristics of trees predisposed to die. Bioscience 1987, 37, 569–574, doi:10.2307/1310667.
[20]  Raffa, K.F.; Aukema, B.H.; Bentz, B.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 2008, 58, 501–517.
[21]  Berryman, A.A. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Env. Entomol. 1976, 5, 1225–1233.
[22]  Bone, C.; Dragicevic, S.; Roberts, A. Integrating high resolution RS, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestation. Int. J. Remote Sens. 2005, 26, 4809–4828.
[23]  Larsson, S.; Oren, R.; Waring, R.H.; Barrett, J.W. Attacks of mountain pine beetle as related to tree vigor of ponderosa pine. For. Sci. 1983, 29, 395–402.
[24]  Waring, R.H.; Pitman, G.B. Modifying lodgepole pine stands to change susceptibility to mountain pine beetle attack. Ecology 1985, 66, 889–897.
[25]  Raffa, K.F.; Berryman, A.A. Interacting selective pressures in conifer-bark beetle systems: A basis for reciprocal adaptations? Am. Nat. 1987, 129, 234–262.
[26]  Hoffmeister, T.S.; Ver, L.E.; Biere, A.; Holsinger, K.; Filser, J. Ecological and evolutionary consequences of biological invasion and habitat fragmentation. Ecosystems 2005, 8, 657–667, doi:10.1007/s10021-003-0138-8.
[27]  Cappuccino, N.; Martin, M.A. The birch tube-maker Acrobasis betulella in a fragmented habitat: The importance of patch isolation and edges. Oecoligca 1997, 110, 69–76, doi:10.1007/s004420050134.
[28]  Radeloff, V.C.; Mladenoff, D.J.; Boyce, M.S. The changing relation of landscape patterns and jack pine budworm populations during an outbreak. Oikos 2000, 90, 417–430.
[29]  Cooke, B.J.; Roland, J. Spatial analysis of large-scale patterns of forest tent caterpillar outbreaks. Ecoscience 2000, 7, 410–422.
[30]  Roland, J. Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecoligca 1993, 93, 25–30.
[31]  Barclay, H.J.; Li, C.; Benson, L.; Taylor, S.; Shore, T. Effects of fire return rates on traversability of lodgepole pine forests for mountain pine beetle (Coleoptera:Scolytidae) and the use of patch metrics to estimate traversability. Can. Entomol. 2005, 137, 566–583, doi:10.4039/n05-026.
[32]  Ryall, K.L.; Fahrig, L. Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos 2005, 110, 265–270.
[33]  Aukema, B.H.; Carroll, A.L.; Zhu, J.; Raffa, K.F.; Sickley, T.A.; Taylor, S.W. Landscape level analysis of mountain pine beetle in British Columbia, Canada: A spatiotemporal development and spatial synchrony within the present outbreak. Ecography 2006, 29, 427–441, doi:10.1111/j.2006.0906-7590.04445.x.
[34]  Wulder, M.A.; White, J.C.; Grills, D.; Nelson, T.A.; Coops, N.C.; Ebata, T. Aerial overview survey of the mountain pine beetle epidemic in British Columbia: Communication of impacts. BC J. Ecosyst. Manag. 2009, 10, 45–58.
[35]  British Columbia Ministry of Forests; Canadian Forest Service. Forest Health Aerial Overview Survey Standards for British Columbia: The BC Ministry of Forests Adaptation of the Canadian Forest Service’s FHN Report 97–1 “Overview Aerial Survey Standards for British Columbia and the Yukon”. Version 2.0; Resources Inventory Committee: Victoria, Canada, 2000.
[36]  Wulder, M.A.; White, J.C.; Cranny, M.; Hall, R.J.; Luther, J.E.; Beaudoin, A.; Goodenough, D.G.; Dechka, J.A. Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project. Can. J. Remote Sens. 2008, 34, 549–562, doi:10.5589/m08-066.
[37]  Wulder, M.A.; White, J.C.; Han, T.; Coops, N.C.; Cardille, J.A.; Holland, T.; Grills, D. Monitoring Canada’s forests. Part 2: National forest fragmentation and pattern. Can. J. Remote Sens. 2008, 34, 563–584, doi:10.5589/m08-081.
[38]  Franklin, J.F.; Forman, R.T. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landsc. Ecol. 1987, 1, 5–18, doi:10.1007/BF02275261.
[39]  Haines-Young, R.; Chopping, M. Quantifying landscape structure: A review of landscape indices and their application to forested landscapes. Prog. Phys. Geogr. 1996, 20, 418–445, doi:10.1177/030913339602000403.
[40]  Gergel, S.E. New Directions in Landscape Pattern Analysis and Linkages with Remote Sensing. In Understanding Forest Disturbance and Spatial Pattern: Remote Sensing and GIS Approaches; Wulder, M.A., Franklin, S.E., Eds.; Taylor and Francis Group: Boca Raton, FL, USA, 2007; pp. 173–208.
[41]  He, H.S.; DeZonia, B.E.; Mladenoff, D.J. An aggregation index (AI) to quantify spatial patterns of landscapes. Landsc. Ecol. 2000, 15, 591–601, doi:10.1023/A:1008102521322.
[42]  Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc. Ecol. 2004, 19, 435–455, doi:10.1023/B:LAND.0000030521.19856.cb.
[43]  Robertson, C.; Farmer, C.J.Q.; Nelson, T.A.; MacKenzie, I.K.; Wulder, M.A.; White, J.C. Determination of the compositional change (1999–2006) in the pine forests of British Columbia due to mountain pine beetle infestation. Env. Monit. Assess. 2009, 158, 593–608, doi:10.1007/s10661-008-0607-9.
[44]  Shore, T.L.; Safranyik, L.; Lemieux, J.P. Susceptibility of lodgepole pine stands to the mountain pine beetle: Testing of a rating system. Can. J. For. Res. 2000, 30, 44–49, doi:10.1139/x99-182.
[45]  Environmental Systems Research Institute (ESRI), ArcGIS Desktop: Release 9.3., ESRI, Redlands, CA, USA, 2008.
[46]  R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011.
[47]  Taylor, S.W.; Carroll, A.L. Disturbance, Forest Age, and Mountain Pine Beetle Outbreak Dynamics in BC: A Historical Perspective. In Proceedings of the Mountain Pine Beetle Symposium: Challenges and Solutions, Kelowna, Canada, 30–31 October 2003; Shore, T.L., Brooks, J.E., Stone, J.E., Eds.; Canadian Forest Service: Victoria, Canada, 2004. BC-X-398; pp. 41–51.
[48]  Cudmore, T.J.; Bjorklund, N.; Carroll, A.L.; Lindgren, B.S. Climate change and range expansion of an aggressive bark beetle: Evidence of higher beetle reproduction in naive host tree populations. J. Appl. Ecol. 2010, 47, 1036–1043, doi:10.1111/j.1365-2664.2010.01848.x.
[49]  Lynch, H.J.; Renkin, R.A.; Crabtree, R.L.; Moorcroft, P.R. The influence of previous mountain pine beetle (Dentroctonus ponderosae) activity on the 1988 Yellowstone Fires. Ecosystems 2006, 9, 1318–1327, doi:10.1007/s10021-006-0173-3.
[50]  Fares, Y.; Sharpe, P.J.H.; Magnuson, C.E. Pheromone dispersion in forests. J. Theor. Biol. 1980, 84, 335–359, doi:10.1016/S0022-5193(80)80010-5.
[51]  Bentz, B.J.; Logan, J.A.; Amman, G.D. Temperature-dependent development of the mountain pine beetle (Coleoptera:Scolytidae) and simulation of its phenology. Can. Entomol. 1991, 123, 1083–1094, doi:10.4039/Ent1231083-5.
[52]  Régnière, J.; Bentz, B. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. J. Insect Physiol. 2007, 53, 559–572.
[53]  Safranyik, L.; Linton, D.A. Mortality of mountain pine beetle larvae, Dendroctonus ponderosae (Coleoptera:Scolytidae) in logs of lodgepole pine (Pinus contorta var. latifolia) at constant low temperatures. J. Entomol. Soc. Br. Columbia 1998, 95, 81–87.
[54]  Furnis, M.M.; Furnis, R.L. Scolytids (Coleoptera) on snowfields above timberline in Oregon and Washington. Can. Entomol. 1972, 104, 1471–1478, doi:10.4039/Ent1041471-9.
[55]  Shore, T.L.; Safranyik, L. Susceptibility and Risk Rating Systems for the Mountain Pine Beetle in Lodgepole Pine Stands; Canadian Forest Service: Victoria, Canada, 1992. BC-X-336; p. 12.
[56]  Geiszler, D.R.; Gallucci, V.F.; Gara, R.I. Modeling the dynamics of mountain pine beetle aggregation in a lodgepole pine stand. Oecologia 1980, 46, 244–253, doi:10.1007/BF00540133.
[57]  Elkin, C.M.; Reid, M.L. Shifts in breeding habitat selection behaviour in response to population density. Oikos 2010, 119, 1070–1080, doi:10.1111/j.1600-0706.2009.18010.x.
[58]  Wallin, K.F.; Raffa, K.F. Feedback between individual host selection behavior and population dynamics in an eruptive herbivore. Ecol. Monogr. 2004, 74, 101–116, doi:10.1890/02-4004.
[59]  Amman, G.D.; McGregor, M.D.; Cahill, D.B.; Klein, W.H. Guidelines for Reducing Loss of Lodgepole Pine to the Mountain Pine Beetle in Unmanaged Stands in the Rocky Mountains; USDA Forest Service: Ogden, UT, USA, 1978; p. 19.
[60]  Berryman, A.A. A Synoptic Model of the Lodgepole Pine/Mountain Pine Beetle Interactions and Its Potential for Application in Forest Management. In Proceedings of a Symposium Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, Pullman, WA, USA, 25–27 April 1978; Berryman, A.A., Amman, G.D., Stark, R.W., Eds.; University of Idaho: Moscow, ID, USA, 1978; pp. 98–105.
[61]  Mahoney, RL. Lodgepole Pine/Mountain Pine Beetle Risk Classification Methods and Their Application. In Proceedings of a Symposium Theory and Practice of Mountain Pine Beetle Management in Lodgepole Pine Forests, Pullman, WA, USA, 25–27 April 1978; Berryman, A.A., Amman, G.D., Stark, R.W., Eds.; University of Idaho: Moscow, ID, USA, 1978; pp. 106–110.
[62]  Robertson, C.; Wulder, M.A.; Nelson, T.A.; White, J.C. Risk rating for mountain pine beetle infestation of lodgepole pine forests over large areas with ordinal regression. For. Ecol. Manag. 2008, 256, 900–912, doi:10.1016/j.foreco.2008.05.054.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413