全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2013 

Selection of Provenances to Adapt Tropical Pine Forestry to Climate Change on the Basis of Climate Analogs

DOI: 10.3390/f4010155

Keywords: provenance trials, site quality modelling, management decision support tools, climate similarity, growth prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pinus patula and Pinus tecunumanii play an important role in the forestry sector in the tropics and subtropics and, in recent decades, members of the International Tree Breeding and Conservation Program (Camcore) at North Carolina State University have established large, multi-site provenance trials for these pine species. The data collected in these trials provide valuable information about species and provenance choice for plantation establishment in many regions with different climates. Since climate is changing rapidly, it may become increasingly difficult to choose the right species and provenance to plant. In this study, growth performance of plantings in Colombia, Brazil and South Africa was correlated to the degree of climatic dissimilarity between planting sites. Results are used to assess the suitability of seed material under a changing climate for four P. patula provenances and six P. tecunumanii provenances. For each provenance, climate dissimilarities based on standardized Euclidean distances were calculated and statistically related to growth performances. We evaluated the two methods of quantifying climate dissimilarity with extensive field data based on the goodness of fit and statistical significance of the climate distance relation to differences in height growth. The best method was then used as a predictor of a provenance change in height growth. The provenance-specific models were used to predict provenance performance under different climate change scenarios. The developed provenance-specific models were able to significantly relate climate similarity to different growth performances for five out of six P. tecunumanii provenances. For P. patula provenances, we did not find any correlation. Results point towards the importance of the identification of sites with stable climates where high yields are achievable. In such sites, fast-growing P. tecunumanii provenances with a high but narrow growth optimum can be planted. At sites with climate change of uncertain direction and magnitude, the choice of P. patula provenances, with greater tolerance towards different temperature and precipitation regimes, is recommended. Our results indicate that the analysis of provenance trial data with climate similarity models helps us to (1) maintain plantation productivity in a rapidly changing environment; and (2) improve our understanding of tree species’ adaptation to a changing climate.

References

[1]  IPCC. Climate Change 2007: Synthesis Report; Cambridge University Press: New York, NY, USA, 2007.
[2]  McKenney, D.; Pedlar, J.; O’Neill, G. Climate change and forest seed zones: Past trends, future prospects and challenges to ponder. For. Chron. 2009, 85, 258–266.
[3]  Fairbanks, D. South African Country Study on Climate Change: Vulnerability and Adaptation Assessment for Plantation Forestry; National Research Foundation: Pretoria, South Africa, 1999.
[4]  Spittlehouse, D.L.; Stewart, R.G. Adaptation to climate change in forest management. BC J. Ecosyst. Manag. 2003, 4, 1–11.
[5]  Maginnis, S.; Jackson, W. The Role of Planted Forests in Forest Landscape Restoration. In Proceedings of the UNFF Intersessional Experts Meeting on the Role of Planted Forests in Sustainable Forest Management, Christchurch, New Zealand, 25–27 March 2003; pp. 87–99.
[6]  Carle, J.; Holmgren, P. Wood from planted forests: A global outlook 2005–2030. For. Prod. J. 2008, 58, 6–18.
[7]  FRA. Global Forest Resources Assessment 2010; Forestry Paper for FAO: Rome, Italy, 2010; p. 136.
[8]  IPCC. Land Use, Land Use Change and Forestry; Cambridge University Press: Cambridge, UK, 2000.
[9]  Guariguata, M.R.; Cornelius, J.P.; Locatelli, B.; Forner, C.; Sánchez-Azofeifa, G.A. Mitigation needs adaptation: Tropical forestry and climate change. Mitig. Adapt. Strategy Glob. Chang. 2008, 13, 793–808, doi:10.1007/s11027-007-9141-2.
[10]  Dvorak, W.S.; Hodge, G.R.; Romero, J.L. Results of twenty years of research on Pinus tecunumanii by the CAMCORE Cooperative. For. Genet. Resour. 2001, 29, 2–6.
[11]  Glantz, M.H. Societal Responses to Climate Change: Forecasting by Analogy; Westview Press: Boulder, CO, USA, 1988.
[12]  Glantz, M.H. Does history have a future—Forecasting climate change effects on fisheries by analogy. Fisheries 1990, 15, 39–44, doi:10.1577/1548-8446(1990)015<0039:DHHAFF>2.0.CO;2.
[13]  Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742, doi:10.1073/pnas.0606292104.
[14]  Hallegatte, S.; Hourcade, J.C.; Ambrosi, P. Using climate analogues for assessing climate change economic impacts in urban areas. Clim. Chang. 2007, 82, 47–60, doi:10.1007/s10584-006-9161-z.
[15]  Ford, J.D.; Keskitalo, E.C.H.; Smith, T.; Pearce, T.; Berrang-Ford, L.; Duerden, F.; Smit, B. Case study and analogue methodologies in climate change vulnerability research. Wiley Interdiscip. Rev. 2010, 3, 374–392.
[16]  Robertson, C.C. A Reconnaissance of The Forest Trees of Australia from the Point of View of Their Cultivation in South Africa; South African Government Printer: Capetown, South Africa, 1926.
[17]  Golfari, L.; Caser, R.L.; Moura, V.P.G. Zoneamento ecologico esquematico para reflorestamento no Brasil. Série Técnica 1978, 11, 1–66.
[18]  Booth, T.H. A new method for assisting species selection. Commonw. For. Rev. 1985, 64, 241–250.
[19]  Dvorak, W.S.; Donahue, J.H.; Vásquez, J.A. Early performance of CAMCORE introductions of Pinus patula in Brazil, Colombia and South Africa. S. Afr. For. J. 1995, 174, 23–33.
[20]  Dvorak, W.S.; Jordan, A.P.; Romero, J.L.; Hodge, G.R.; Furman, B.J. Quantifying the geographic range of Pinus patula var longipedunculata in southern Mexico using morphologic and RAPD marker data. S. Afr. For. J. 2001, 192, 19–30.
[21]  Hijmans, R.J.; Schreuder, M.; de la Cruz, J.; Guarino, L. Using GIS to check coordinates of genebank accessions. Genet. Resour. Crop Evol. 1999, 46, 291–296, doi:10.1023/A:1008628005016.
[22]  Birks, J.S.; Barnes, R.D. The Genetic Control of Wood Quality in Pinus patula; ODA Research Scheme R4616; Oxford Forestry Institute, University of Oxford: Oxford, UK, 1991.
[23]  Hodge, G.R.; Dvorak, W.S. Growth potential and genetic parameters of four mesoamerican pine planted in the southern hemisphere. South. For. 2012, 74. in press.
[24]  Dvorak, W.S.; Hodge, G.R.; Gutiérrez, E.A.; Osorio, L.F.; Malan, F.S.; Stanger, T.K. Pinustecunumanii. In Conservation and Testing of Tropical and Subtropical Forest Tree Species; CAMCORE Cooperative: Raleigh, NC, USA, 2000; pp. 188–209.
[25]  Dvorak, W.S.; Balocchi, C.E.; Raymond, R.H. Performance and Stability of Provenances and Families of Pinus tecunumanii in the Tropics and Subtropics. In Breeding Tropical Trees: Population Structure And Genetic Improvement Strategies In Clonal And Seedling Forestry; Gibson, G.L., Griffin, A.R., Matheson, A.C., Eds.; Oxford Forestry Institute: Oxford, UK, 1989; pp. 187–196.
[26]  Dvorak, W.S.; Potter, K.M.; Hipkins, V.D.; Hodge, G.R. Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). Int. J. Plant Sci. 2009, 170, 609–626, doi:10.1086/597780.
[27]  Kanzler, A. Genotype × environment interaction in Pinus patula and its implications in South Africa. PhD thesis, Department of Forestry, North Carolina State University, Raleigh, NC, USA, 2010.
[28]  Louw, J.H. Site Classification and Evaluation for Commercial Forestry in the Crocodile River Catchment; University of Stellenbosch: Stellenbosch, South Africa, 1995.
[29]  IUCN and UNEP. The World Database on Protected Areas (WDPA); UNEP-WCMC: Cambridge, UK, 2009.
[30]  Eva, H.D.; de Miranda, E.E.; di Bella, C.M.; Gond, V.; Sgrenzaroli, O.M.; Jones, S.; Coutinho, A.; Dorado, A.; Guimar?es, M.; Elvidge, C.; et al. A vegetation map of South America, European Commission; EUR 20159 EN; Joint Research Centre: Brussels, Belgium, 2002.
[31]  Mayaux, P.; Bartholomé, E.; Massart, M.; van Cutsem, C.; Cabral, A.; Nonguierma, A. A Land-Cover Map of Africa; EUR 20665 EN; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2003.
[32]  Bartholomé, E.; Belward, A.S.; Achard, F.; Bartalev, S.; Carmona Moreno, C.; Eva, H.; Fritz, S.; Grégoire, J.M.; Mayaux, P.; Stibig, H.J. Global Land Cover Mapping for the Year 2000—Project Status November 2002; ref EUR 20524; JRC: Ispra, Italy, 2003.
[33]  Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978, doi:10.1002/joc.1276.
[34]  Busby, J.R. BIOCLIM-A Bioclimatic Analysis and Prediction System. In Nature Conservation: Cost Effective Biological Surveys and Data Analysis; Margules, C.R., Austin, M.P., Eds.; CSIRO: Canberra, Australia, 1991; pp. 64–68.
[35]  R Development Core Team: R. A Language and Environment for Statistical Computing, Version 2.13.0; R Foundation for Statistical Computing: Vienna, Austria, 2011. Available online: http://www.R-project.org/ (accessed on 6 May 2011).
[36]  Arc 9.3 Arc/Info; Environmental Systems Research Institute: Redlands, CA, USA, 2009.
[37]  Arnell, N.A.; Osborne, T.; Hiiker, J. Using Agriculturally Meaningful Measures of Climatic Similarity to Identify Present and Future Analogue Climates; Report to CCAFS: Development of Prototype Climate Analogue Tool 2011; Walker Institute for Climate System Research, University of Reading: West Berkshire, UK, 2011.
[38]  Huston, M. Soil nutrients and tree species richness in Costa Rican forests. J. Biogeogr. 1980, 7, 147–157, doi:10.2307/2844707.
[39]  Dise, N.B.; Wright, R.F. Nitrogen leaching from European forests in relation to nitrogen deposition. For. Ecol. Manag. 2000, 71, 153–161, doi:10.1016/0378-1127(94)06092-W.
[40]  Yang, Y.; Watanabe, M.; Li, F.; Zhang, J.; Zhang, W.; Zhai, J. Factors affecting forest growth and possible effects of climate change in the Taihang Mountains, northern China. Forestry 2006, 79, 135–147.
[41]  Bedrick, E.J. Checking for lack of fit in linear models with parametric variance functions. Technometrics 2000, 42, 227–236, doi:10.2307/1271078.
[42]  Mac Nally, R. Regression and model-building in conservation biology, biogeography and ecology: The distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers. Conserv. 2000, 9, 665–671, doi:10.1023/A:1008985925162.
[43]  O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690, doi:10.1007/s11135-006-9018-6.
[44]  PCMDI, IPCC Model Output 2007. Available online: http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php (accessed on 20 June 2011).
[45]  IPCC Special Report on Emissions Scenarios (SRES); Nakicenovic, N., Swart, R., Eds.; Cambridge University Press: Cambridge, UK, 2000.
[46]  Lugo, A.E.; Brown, S.; Chapman, J. An analytical review of production rates and stemwood biomass of tropical forest plantations. For. Ecol. Manag. 1988, 23, 189–200.
[47]  Mearns, L.O.; Rosenzweig, C.; Goldberg, R. Mean and variance change in climate scenarios: Methods, agricultural applications, and measures of uncertainty. Clim. Chang. 1997, 34, 367–396.
[48]  Whittingham, M.J.; Stephens, P.A.; Bradbury, R.B.; Freckleton, R.P. Why do we still use stepwise modeling in ecology and behaviour? J. Anim. Ecol. 2006, 75, 1182–1189, doi:10.1111/j.1365-2656.2006.01141.x.
[49]  Rencher, A.C.; Pun, F.C. Inflation of R2 in best subset regression. Technometrics 1980, 22, 49–53, doi:10.2307/1268382.
[50]  Gonzalez, R.W.; Salón, D.; Dasmohaptra, S.; Cubbage, F. South America industrial roundwood supply potential. BioResources 2008, 3, 255–269.
[51]  Matalaa, J.; Ojansuu, R.; Peltola, H.; Siev?nen, R.; Kellom?ki, S. Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecol. Model. 2005, 181, 173–190, doi:10.1016/j.ecolmodel.2004.06.030.
[52]  Rehfeldt, G.E.; Tchebakova, N.M.; Parfenova, Y.I.; Wykoff, W.R.; Kuzmina, N.A.; Milyutin, L.I. Intraspecific responses to climate in Pinus sylvestris. Glob. Chang. Biol. 2002, 8, 912–929, doi:10.1046/j.1365-2486.2002.00516.x.
[53]  Fairbanks, D. South African Country Study on Climate Change: Vulnerability and Adaptation Assessment for Plantation Forestry; National Research Foundation: Pretoria, South Africa, 1999.
[54]  Rowhani, P.; Lobell, D.B.; Linderman, M.; Ramankutty, N. Climate variability and crop production in Tanzania. Agric. For. Meteorol. 2001, 151, 449–460.
[55]  Brook, J.R.; Flanagan, L.B.; Ehleringer, J.R. Responses of boreal conifers to climate fluctuations: Indications from tree-ring widths and carbon isotope analyses. Can. J. For. Res. 1998, 29, 524–533.
[56]  Clark, D.A.; Clark, D.B. Climate induces annual variation in canopy tree growth in a Costa Rican tropical rain forest. J. Ecol. 1994, 82, 865–872, doi:10.2307/2261450.
[57]  Mátyás, C. Climatic adaptation of trees: Rediscovering provenance tests. Euphytica 1996, 92, 45–54, doi:10.1007/BF00022827.
[58]  William, R.L.; Barner, H. Matching Seed Source to Planting Site; Lecture Note B.3; Danida Forest Seed Centre: Humlebaek, Denmark, 1993.
[59]  Finley, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding program. Aust. J. Agric. Res. 1963, 14, 342–354.
[60]  Lortie, C.J.; Aarssen, L.W. The specialization hypothesis for phenotypic plasticity in plants. Int. J. Plant Sci. 1996, 15, 484–487.
[61]  Via, S.; Gomulkiewicz, R.; de Jong, G.; Scheiner, S.M.; Schlichting, C.D. Adaptive phenotypic plasticity: Consensus and controversy. Trends Ecol. Evol. 1995, 10, 212–217, doi:10.1016/S0169-5347(00)89061-8.
[62]  Emery, R.J.N.; Chinnappa, C.C.; Chmielewski, J.G. Specialization, plant strategies, and phenotypic plasticity in populations of Stellaria longipes along an elevational gradient. Int. J. Plant Sci. 1994, 155, 203–219.
[63]  Hodge, G.R.; Dvorak, W.S. Genetic parameters and provenance variation of Pinus tecunumanii in 78 international trials. For. Genet. 1999, 6, 157–180.
[64]  Rosvall, O.; Ericsson, T. F?rtlyttningseffekter I norrl?ndska gran-proveniensf?rs?rk. F?reningen Skogrstr?ds-f?r?dling; Institutet for Skogsf?rb?ttring: ?rsbok, Sweden, 1981.
[65]  Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679, doi:10.1126/science.292.5517.673.
[66]  FAO. Adaptation to Climate Change in Agriculture, Forestry and Fisheries: Perspective, Framework and Priorities; Food Agricultural Organization of the United Nations: Rome, Italy, 2007; p. 2.
[67]  Mitchell, R.G.; Steenkamp, E.T.; Coutinho, T.A.; Wingfield, M.J. The pitch canker fungus, Fusarium circinatum: Implications for South African forestry. South. For. 2011, 73, 1–13.
[68]  Wilby, R.; Dawson, C. SDSM 4.1–A Decision Support Tool for the Assessment of Regional Climate Change Impacts; User Manual: London, UK, 2007; p. 93.
[69]  Stott, P.A.; Kettleborough, J.A. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 2002, 416, 723–726, doi:10.1038/416723a.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133