Regrowth and planted trees in agricultural landscapes are rarely protected from clearing under national Forest Acts. There is, therefore, some question over the long-term security of any value they might provide to biodiversity and the global carbon cycle. Engaging landholders in carbon credits that are conditioned on planted areas being maintained into the future could improve the situation. To begin carbon trading, landholders need precise and accurate estimates of the carbon sequestered by the trees in their fields. Accurate estimates of carbon stocks depend to a greater degree on the availability and adequacy of the allometric equations that are used to estimate tree biomass. The present study has developed an allometric model for estimating the woody biomass of Jatropha trees planted as boundary hedges in agricultural landscapes under smallholder farming systems in Malawi. The predictive performance of the model was assessed and was subsequently compared with the published Jatropha models. The results showed that the statistical fits of our model were generally good, enabling one to use it with confidence for estimating wood biomass in Jatropha stands from which they were derived. The published Jatropha models consistently overestimated the woody biomass by as much as 55%, rendering them unsuitable for application in estimating woody biomass in our study sites.
Government of Malawi. National Forest Act; Lilongwe, Malawi.
[3]
Mascaro, J.; Litton, C.M.; Hughes, R.F.; Uowolo, A.; Schnitzer, S.A. Minimizing bias in biomass allometry: Model selection and log-transformation of data. Biotropica 2011, 43, 649–653, doi:10.1111/j.1744-7429.2011.00798.x.
[4]
Angelsen, A.; Brown, S.; Loisei, C.; Peskett, L.; Streck, C.; Zarin, D. Reducing Emissions from Deforestation and Forest Degradation (REDD); Technical Report for the Government of Norway; Meridian Institute: Washington, DC, USA, 2009. Available online: www.redd-oar.org (accessed on 7 November 2012).
[5]
Preece, N.D.; Crowley, G.M.; Lawes, M.J.; van Oosterzee, P. Comparing aboveground biomass among forest types in wet tropics: Small stems and plantation types matter in carbon accounting. For. Ecol. Manag. 2012, 264, 228–237, doi:10.1016/j.foreco.2011.10.016.
[6]
Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99, doi:10.1007/s00442-005-0100-x.
[7]
Kuyah, S.; Dietz, J.; Muthuri, C.; Jamnadass, R.; Mwangi, P.; Coe, R.; Neufeldt, H. Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agric. Ecosyst. Environ. 2012, 158, 216–224, doi:10.1016/j.agee.2012.05.011.
[8]
Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2012, 116, 363–372, doi:10.1016/S0269-7491(01)00212-3.
[9]
Chave, J.; Condit, R.; Lao, S.; Caspersen, J.P.; Foster, R.B.; Hubbell, S.P. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. J. Ecol. 2003, 91, 240–252, doi:10.1046/j.1365-2745.2003.00757.x.
[10]
Pilli, R.; Anfodillo, T.; Carrer, M. Towards a functional and simplified allometry for estimating forest biomass. For. Ecol. Manag. 2006, 237, 583–593, doi:10.1016/j.foreco.2006.10.004.
[11]
Urquiza-Haas, T.; Dolman, P.M.; Peres, C.A. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. For. Ecol. Manag. 2007, 247, 80–90, doi:10.1016/j.foreco.2007.04.015.
[12]
Navar, J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. For. Ecol. Manag. 2009, 257, 427–434, doi:10.1016/j.foreco.2008.09.028.
[13]
Alvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de Las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodriguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308, doi:10.1016/j.foreco.2011.12.013.
[14]
Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. B 2004, 359, 409–420, doi:10.1098/rstb.2003.1425.
[15]
Litton, C.M.; Sandquist, D.R.; Cordell, S. Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii. For. Ecol. Manag. 2006, 231, 105–113, doi:10.1016/j.foreco.2006.05.008.
[16]
Litton, C.M.; Kauffman, J.B. Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 2008, 40, 313–320, doi:10.1111/j.1744-7429.2007.00383.x.
[17]
Fonseca, W.; Alice, F.E.; Rey-Benayas, J.M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For. 2012, 43, 197–211.
[18]
Morote, F.A.G.; Serrano, F.R.L.; Andreas, M.; Rubino, E.; Jimenez, J.L.G.; de las Heras, J. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain. For. Ecol. Manag. 2012, 270, 85–93, doi:10.1016/j.foreco.2012.01.007.
[19]
Stewart, J.L.; Dunsdon, A.J.; Hellin, J.J.; Hughes, C.E. Wood biomass estimation of Central American dry zone species. In Tropical Forestry Papers; Oxford Forestry Institute: Oxford, UK, 1992; p. 83.
[20]
Eamus, D.; McGuinness, K.; Burrows, W. Review of Allometric Relationships for Estimating Woody Biomass for Queensland, the Northern Territory and Western Australia. National Carbon Accounting System (NCAS), Australian Greenhouse Office: Canberra, Australia, 2000.
[21]
Openshaw, K. A review of Jatropha curcas: An oil plant of unfulfilled promise. Biomass Bioenerg. 2000, 19, 1–15, doi:10.1016/S0961-9534(00)00019-2.
[22]
Rasmussen, L.V.; Rasmussen, K.; Bruun, T.B. Impacts of Jatropha-based biodiesel production on above and belowground carbon stocks. A case study from Mozambique. Energy Policy 2012, 51, 728–736, doi:10.1016/j.enpol.2012.09.029.
Verified Carbon Standard—Agriculture, Forestry and Other Land Use Requirements, VCS v3.0 2011, Available online: www.v-c-s.org (accessed on 18 January 2013).
[25]
Achten, W.M.J.; Maes, W.H.; Reubens, B.; Mathijs, E.; Singh, V.P.; Verchot, L.; Muys, B. Biomass production and allocation in Jatropha curcas L. seedlings under different levels of drought stress. Biomass Bioenerg. 2010, 34, 667–676, doi:10.1016/j.biombioe.2010.01.010.
[26]
Brassard, B.W.; Chen, H.Y.H.; Bergeron, Y.; Pare, D. Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass Bioenerg. 2011, 35, 4189–4196, doi:10.1016/j.biombioe.2011.06.045.
[27]
Mponela, P.; Jumbe, C.B.L.; Mwase, W.F. Determinants and extent of land allocation for Jatropha curcas L. cultivation among smallholder farmers in Malawi. Biomass Bioenerg. 2011, 35, 2499–2505, doi:10.1016/j.biombioe.2011.01.038.
[28]
Hardcastle, P.D. A Preliminary Silvicultural Classification of Malawi; Forerstry Research Institute of Malawi: Zomba, Malawi, 1978.
[29]
West, G.B.; Brown, J.H.; Enquist, B.J. A general model for the structure and allometry of plant vascular systems. Nature 1999, 400, 664–667.
[30]
Kaitaniemi, P. Testing allometric scaling laws. J. Theory Biol. 2004, 228, 149–153, doi:10.1016/j.jtbi.2003.12.007.
[31]
Djomo, A.N.; Ibrahima, A.; Saborowski, J.; Gravenhorst, G. Allometric equations for biomass estimations in Cameroon and pan moist tropical equations including biomass data from Africa. For. Ecol. Manag. 2010, 260, 1873–1885, doi:10.1016/j.foreco.2010.08.034.
[32]
Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593.
[33]
Ong, J.E.; Gong, W.K.; Wong, C.H. Allometry and partitioning of the mangrove, Rhizophora apiculata. For. Ecol. Manag. 2004, 188, 395–408, doi:10.1016/j.foreco.2003.08.002.
[34]
Warton, D.I.; Wright, I.J.; Falster, D.S.; Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 2006, 81, 259–291.
[35]
Osborne, J.W. Notes on the use of data transformations. Pract. Assess. Res. Eval. 2002. Available online: http://PAREonline.net/getvn.asp?v=8&n=6 (accessed on 13 March 2013).
[36]
Packard, G.C.; Birchard, G.F.; Boardman, T.J. Fitting statistical models in bivariate allometry. Biol. Rev. 2011, 86, 549–563, doi:10.1111/j.1469-185X.2010.00160.x.
[37]
Cole, G.; Ewel, J.J. Allometric equations for four valuable tropical species. For. Ecol. Manag. 2006, 229, 351–360, doi:10.1016/j.foreco.2006.04.017.
[38]
Ketterings, Q.M.; Coe, R.; Noordwijk, M.; Ambagau, Y.; Palm, C.A. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 2001, 146, 199–209, doi:10.1016/S0378-1127(00)00460-6.