全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Do axes of rotation change during fast and slow motions of the dominant and non-dominate arms?

DOI: 10.1051/bioconf/20110100032

Full-Text   Cite this paper   Add to My Lib

Abstract:

The velocity-dependent change in rotational axes observed in the control of unconstrained 3D arm rotations for the dominant limb seems to conform to a minimum inertia resistance (MIR) principle [4]. This is an efficient biomechanical solution that allows for the reduction of torques. We tested whether the MIR principle governs rotating movement when subjects were instructed to maintain the shoulder-elbow joint axis close to horizontal for both dominant and non dominant limbs. Subjects (n=12) performed externalinternal rotations of their arms in two angular positions (90° versus 150°), two angular velocities (slow (S) versus fast (F)), and in two sensory conditions (kinaesthetic (K) versus visuo- kinaesthetic (VK)). We expected more scattered displacements of the rotation axis employed for rotating the non dominant limb compared to the dominant limb. The results showed that the rotational axis of a multiarticulated limb coincided with SH-EL at S & F velocity for both arms.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413