|
Modeling holo-ACP:DH and holo-ACP:KR complexes of modular polyketide synthases: a docking and molecular dynamics studyKeywords: Molecular dynamics, Protein-ligand docking, Protein-protein interaction, Substrate binding site, Evolutionary conservation, Modular polyketide synthase, Dehydratase domain, Ketoreductase domain Abstract: We have modeled the holo-ACP:DH and holo-ACP:KR complexes for identifying specific residues on DH and KR domains which are involved in interaction with ACP, phosphopantetheine and substrate moiety. A novel combination of protein-protein and protein-ligand docking has been used to first model complexes involving apo-ACP and then dock the phosphopantetheine and substrate moieties using covalent connectivity between ACP, phosphopantetheine and substrate moiety as constraints. The holo-ACP:DH and holo-ACP:KR complexes obtained from docking have been further refined by restraint free explicit solvent MD simulations to incorporate effects of ligand and receptor flexibilities. The results from 50?ns MD simulations reveal that substrate enters into a deep tunnel in DH domain while in case of KR domain the substrate binds a shallow surface exposed cavity. Interestingly, in case of DH domain the predicted binding site overlapped with the binding site in the inhibitor bound crystal structure of FabZ, the DH domain from E.Coli FAS. In case of KR domain, the substrate binding site identified by our simulations was in proximity of the known stereo-specificity determining residues.We have modeled the holo-ACP:DH and holo-ACP:KR complexes and identified the specific residues on DH and KR domains which are involved in interaction with ACP, phosphopantetheine and substrate moiety. Analysis of the conservation profile of binding pocket residues in homologous sequences of DH and KR domains indicated that, these results can also be extrapolated to reductive domains of other modular PKS clusters.Polyketides are secondary metabolites that constitute a major class of pharmaceutically important compounds. The biosynthesis is catalyzed by multi-functional enzymes using an assembly line mechanism. The various domains in these multi-functional enzymes are arranged as modules where each module catalyzes the addition of one extender unit. Each module is constituted by a set of domains responsibl
|