全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A fertile peatland forest does not constitute a major greenhouse gas sink

DOI: 10.5194/bgd-10-5107-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

Afforestation has been proposed as a strategy to mitigate the often high greenhouse gas (GHG) emissions from agricultural soils with a high organic matter content. However, the carbon dioxide (CO2) and nitrous oxide (N2O) fluxes after afforestation can be considerable, depending predominantly on site drainage and nutrient availability. Studies on the full GHG budget of afforested organic soils are scarce and hampered by the uncertainties associated with methodology. In this study we determined the GHG budget of a spruce-dominated forest on a drained organic soil with an agricultural history. Two different approaches for determining the net ecosystem CO2 exchange (NEE) were applied: for the year 2008, direct (eddy covariance) and an indirect (analyzing the different components of the GHG budget), so that uncertainties in each method could be evaluated. The annual tree production in 2008 was 8.2 (± 1.7)t C ha–1yr–1 due to the high levels of soil nutrients, the favorable climatic conditions and the fact that the forest was in its optimum growth phase. N2O fluxes were determined by the closed chamber technique and amounted to 3.3 (± 2.4) t CO2eq ha–1 yr–1. According to the direct measurements from the eddy covariance technique, the site acts as a minor GHG sink of 4.1 (± 2.6) t CO2eq ha–1 yr–1. This contrasts with the NEE estimate derived from the indirect approach which suggests that the site is a net GHG emitter of 3.3 (± 10.1)t CO2eq ha–1 yr–1. Irrespective of the approach applied, the soil CO2 effluxes counter large amounts of the C sequestration by trees. Due to major uncertainties involved in the indirect approach, the direct approach is considered the more reliable tool. As the site was in its optimum growth stage, i.e. the rate of C sequestration was at its maximum and will decrease with forest age, it will probably become a GHG source once again as the trees mature. Since forests in their younger stages are usually GHG sources or have no effect on GHGs, the overall sink potential of this afforested nutrient-rich organic soil is probably limited to only a short period.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133