全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An ODE for an overloaded X model involving a stochastic averaging principle

Keywords: Many-server queues , averaging principle , heavy traffic , deterministic fluid approximation , ordinary differential equations , overload control

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study an ordinary differential equation (ODE) arising as the many-server heavy-traffic fluid limit of a sequence of overloaded Markovian queueing models with two customer classes and two service pools. The system, known as the X model in the call-center literature, operates under the fixed-queue-ratio-with-thresholds (FQR-T) control, which we proposed in a recent paper as a way for one service system to help another in face of an unanticipated overload. Each pool serves only its own class until a threshold is exceeded; then one-way sharing is activated with all customer-server assignments then driving the two queues toward a fixed ratio. For large systems, that fixed ratio is achieved approximately. The ODE describes system performance during an overload. The control is driven by a queue-difference stochastic process, which operates in a faster time scale than the queueing processes themselves, thus achieving a time-dependent steady state instantaneously in the limit. As a result, for the ODE, the driving process is replaced by its long-run average behavior at each instant of time; i.e., the ODE involves a heavy-traffic averaging principle (AP).

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413