全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Introduction of non-linear elasticity models for characterization of shape and deformation statistics: application to contractility assessment of isolated adult cardiocytes

DOI: 10.1186/2046-1682-4-17

Full-Text   Cite this paper   Add to My Lib

Abstract:

We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned.We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.Cardiovascular research based on enzymatically dissociated cardiocytes has been fundamental for the discovery of the mechanisms that govern the heart. The use of the cardiocyte as the basis for cardiac functionality has provided some of the most revealing information regarding heart function. Among the many findings, it has revealed the crucial molecular changes that occur during pathological conditions of the heart. The details regarding the excitation-contraction coupling, calcium transient signal (movement of the calcium ion Ca2+), gene and protein expression, and contractility are all important mechanisms and functions that can be readily studied in the isolated cardiocytes at all stages of development and they are routinely performed during research studies [1-6].Contractility in adult cardiocytes is commonly interpreted as the ability of the cardiac cell to generate force and to shorten. Some of the different methodologies devised to study the contractile process include laser diffraction [7], photodiode arrays [8], scanning ion conductance microscopy [6], and those employing mic

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133