全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies

DOI: 10.5194/gmdd-6-1259-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

MEDUSA-1.0 (Model of Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification) was developed as an "intermediate complexity" plankton ecosystem model to study the biogeochemical response, and especially that of the so-called "biological pump", to anthropogenically-driven change in the World Ocean (Yool et al., 2011). The base currency in this model was nitrogen from which fluxes of organic carbon, including export to the deep ocean, were calculated by invoking fixed C:N ratios in phytoplankton, zooplankton and detritus. Since the beginning of the industrial era, the atmospheric concentration of carbon dioxide (CO2) has significantly increased above its natural, inter-glacial background concentration. Simulating and predicting the carbon cycle in the ocean in its entirety, including ventilation of CO2 with the atmosphere and the resulting impact of ocean acidification on marine ecosystems, therefore requires that both organic and inorganic carbon be afforded a full representation in the model specification. Here, we introduce MEDUSA-2.0, an expanded successor model which includes additional state variables for dissolved inorganic carbon, alkalinity, dissolved oxygen and detritus carbon (permitting variable C:N in exported organic matter), as well as a simple benthic formulation and extended parameterisations of phytoplankton growth, calcification and detritus remineralisation. A full description of MEDUSA-2.0, including its additional functionality, is provided and a multi-decadal hindcast simulation described (1860–2005), to evaluate the biogeochemical performance of the model.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133