全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Representation of nucleation mode microphysics in global aerosol microphysics models

DOI: 10.5194/gmdd-6-893-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

In models, nucleation mode (1 nm < Dp < 10 nm) particle microphysics can be represented explicitly with aerosol microphysical processes or can be parameterized to obtain the growth and survival of nuclei to the model's lower size boundary. This study investigates how the representation of nucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively. We also investigate the impact of the time step for aerosol microphysical processes (a 10-min versus a 1-h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e. 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e. 1 nm boundary) with the 10-min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafine mode (10 nm < Dp < 70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e. 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine mode particles than the model with explicit dynamics (i.e. 1 nm boundary). The spatial distributions of CN10 (Dp > 10 nm) and CCN(0.2%) (i.e. CCN concentrations at 0.2% supersaturation) are moderately affected, especially CN10 predictions above ~ 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by the overprediction of J10 or J3 with the parameterized microphysics possibly due to the instantaneous growth rate assumption in the survival and growth parameterization. The errors in CN10 predictions are sensitive to the choice of the lower size boundary but not to the choice of the time step applied to the microphysical processes. The

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133