|
Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenesDOI: 10.1186/bcr3202 Abstract: DNA variants were analyzed with the splicing prediction programs NNSPLICE and Human Splicing Finder. Functional analyses of candidate variants were performed by lymphocyte RT-PCR and/or hybrid minigene assays. Forty-one BIC variants of exons 19, 20, 23 and 24 were bioinformatically selected and generated by PCR-mutagenesis of the wild type minigenes.Lymphocyte RT-PCR of c.8488-1G > A showed intron 19 retention and a 12-nucleotide deletion in exon 20, whereas c.9026_9030del did not show any splicing anomaly. Minigene analysis of c.8488-1G > A displayed the aforementioned aberrant isoforms but also exon 20 skipping. We further evaluated the splicing outcomes of 41 variants of four BRCA2 exons by minigene analysis. Eighteen variants presented splicing aberrations. Most variants (78.9%) disrupted the natural splice sites, whereas four altered putative enhancers/silencers and had a weak effect. Fluorescent RT-PCR of minigenes accurately detected 14 RNA isoforms generated by cryptic site usage, exon skipping and intron retention events. Fourteen variants showed total splicing disruptions and were predicted to truncate or eliminate essential domains of BRCA2.A relevant proportion of BRCA2 variants are correlated with splicing disruptions, indicating that RNA analysis is a valuable tool to assess the pathogenicity of a particular DNA change. The minigene system is a straightforward and robust approach to detect variants with an impact on splicing and contributes to a better knowledge of this gene expression step.Germline mutations in the BRCA1 (MIM# 113705) and BRCA2 (MIM# 600185) genes confer a high lifetime risk of developing breast/ovarian cancer [1] and account for about 16% of the breast cancer familial risk [2]. Nearly 3,500 different DNA variants of BRCA1 and BRCA2 have been reported at the Breast Cancer Information Core Database (BIC) [3]. Only truncating mutations (1,457 nonsense and frameshift variants, 41.6%), variants in natural splice sites (141, 4%) and a mino
|