|
An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustmentAbstract: We present a simple method to generate a perturbed parameter ensemble (PPE) of a fully-coupled atmosphere-ocean general circulation model (AOGCM), HadCM3, without requiring flux-adjustment. The aim was to produce an ensemble that samples parametric uncertainty in some key variables and displays a similar range of behavior as seen in multi-model ensembles (MMEs). Six atmospheric parameters, a sea-ice parameter and an ocean parameter were jointly perturbed within a reasonable range to generate an initial group of 200 members. To screen out implausible ensemble members, 20 yr pre-industrial control simulations were run and members whose temperature response to the parameter perturbations was projected to be outside the range of 13.6 ± 2°C, i.e. near to the observed pre-industrial global mean, were discarded. 21 members, including the standard unperturbed model, were accepted, covering almost the entire span of the eight parameters, challenging the argument that without flux-adjustment parameter ranges would be unduly restricted. This ensemble was used in 3 experiments; a 800 yr pre-industrial, a 150 yr quadrupled CO2, and a 150 yr 1% CO2 rise per annum simulation. The behavior of the PPE for the pre-industrial control compared well to the CMIP3 ensemble for a number of surface and atmospheric column variables with the exception of a few members in the Tropics. However, we find that members of the PPE with low values of the entrainment rate coefficient show very large increases in upper tropospheric and stratospheric water vapor concentrations in response to elevated CO2 and some show implausibly high climate sensitivities, and as such some of these members will be excluded from future experiments with this ensemble. The outcome of this study is a PPE of a fully-coupled AOGCM which samples parametric uncertainty with a range of behavior similar to the CMIP3 ensemble and a simple methodology which would be applicable to other GCMs.
|