全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

Keywords: Teaching-learning-based optimization , Elitism , Population size , Number of generations , Unconstrained optimization problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

Teaching-Learning-based optimization (TLBO) is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133