全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

Regenerative Inflammation: Lessons from Drosophila Intestinal Epithelium in Health and Disease

DOI: 10.3390/pathogens2020209

Keywords: Drosophila, innate immunity, inflammation, cancer, regeneration, intestine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote “regenerative inflammation” and potentially cancer.

References

[1]  De Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer. 2006, 6, 24–37, doi:10.1038/nrc1782.
[2]  Trinchieri, G. Cancer and Inflammation: An old intuition with rapidly evolving new concepts. Annu. Rev. Immunol. 2012, 30, 677–706, doi:10.1146/annurev-immunol-020711-075008.
[3]  Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545.
[4]  Mladenova, D.; Kohonen-Corish, M.R. Review: Mouse Models of Inflammatory Bowel Disease--Insights into the Mechanisms of Inflammation-Associated Colorectal Cancer. In Vivo 2012, 26, 627–646.
[5]  Apidianakis, Y.; Rahme, L.G. Drosophila Melanogaster as a Model for Human Intestinal Infection and Pathology. Dis. Model. Mech. 2011, 4, 21–30, doi:10.1242/dmm.003970.
[6]  Limmer, S.; Quintin, J.; Hetru, C.; Ferrandon, D. Virulence on the Fly: Drosophila Melanogaster as a Model Genetic Organism to Decipher Host-Pathogen Interactions. Curr. Drug Targets 2011, 12, 978–999, doi:10.2174/138945011795677818.
[7]  Valanne, S.; Wang, J.H.; Ramet, M. The Drosophila Toll Signaling Pathway. J. Immunol. 2011, 186, 649–656.
[8]  Kounatidis, I.; Ligoxygakis, P. Drosophila as a Model System to Unravel the Layers of Innate Immunity to Infection. Open Biol. 2012, 2, 120075, doi:10.1098/rsob.120075.
[9]  Bier, E.; Guichard, A. Deconstructing Host-Pathogen Interactions in Drosophila. Dis. Model. Mech. 2012, 5, 48–61, doi:10.1242/dmm.000406.
[10]  Agaisse, H.; Petersen, U.M.; Boutros, M.; Mathey-Prevot, B.; Perrimon, N. Signaling Role of Hemocytes in Drosophila JAK/STAT-Dependent Response to Septic Injury. Dev. Cell 2003, 5, 441–450, doi:10.1016/S1534-5807(03)00244-2.
[11]  Towb, P.; Sun, H.; Wasserman, S.A. Tube is an IRAK-4 Homolog in a Toll Pathway Adapted for Development and Immunity. J. Innate Immun. 2009, 1, 309–321, doi:10.1159/000200773.
[12]  Huang, G.; Shi, L.Z.; Chi, H. Regulation of JNK and p38 MAPK in the Immune System: Signal Integration, Propagation and Termination. Cytokine 2009, 48, 161–169, doi:10.1016/j.cyto.2009.08.002.
[13]  Ashwell, J.D. The Many Paths to p38 Mitogen-Activated Protein Kinase Activation in the Immune System. Nat. Rev. Immunol. 2006, 6, 532–540, doi:10.1038/nri1865.
[14]  Thompson, M.R.; Kaminski, J.J.; Kurt-Jones, E.A.; Fitzgerald, K.A. Pattern Recognition Receptors and the Innate Immune Response to Viral Infection. Viruses 2011, 3, 920–940, doi:10.3390/v3060920.
[15]  Kumar, H.; Kawai, T.; Akira, S. Pathogen Recognition by the Innate Immune System. Int. Rev. Immunol. 2011, 30, 16–34, doi:10.3109/08830185.2010.529976.
[16]  Shin, O.S.; Harris, J.B. Innate Immunity and Transplantation Tolerance: The Potential Role of TLRs/NLRs in GVHD. Korean J. Hematol. 2011, 46, 69–79, doi:10.5045/kjh.2011.46.2.69.
[17]  Mahoney, D.J.; Cheung, H.H.; Mrad, R.L.; Plenchette, S.; Simard, C.; Enwere, E.; Arora, V.; Mak, T.W.; Lacasse, E.C.; Waring, J.; et al. Both cIAP1 and cIAP2 Regulate TNFalpha-Mediated NF-kappaB Activation. Proc. Natl. Acad. Sci. USA 2008, 105, 11778–11783, doi:10.1073/pnas.0711122105.
[18]  Valanne, S.; Kleino, A.; Myllymaki, H.; Vuoristo, J.; Ramet, M. Iap2 is Required for a Sustained Response in the Drosophila Imd Pathway. Dev. Comp. Immunol. 2007, 31, 991–1001, doi:10.1016/j.dci.2007.01.004.
[19]  Wang, W.B.; Levy, D.E.; Lee, C.K. STAT3 Negatively Regulates Type I IFN-Mediated Antiviral Response. J. Immunol. 2011, 187, 2578–2585, doi:10.4049/jimmunol.1004128.
[20]  Naugler, W.E.; Karin, M. The Wolf in Sheep's Clothing: The Role of Interleukin-6 in Immunity, Inflammation and Cancer. Trends Mol. Med. 2008, 14, 109–119, doi:10.1016/j.molmed.2007.12.007.
[21]  Camporeale, A.; Poli, V. IL-6, IL-17 and STAT3: A Holy Trinity in Auto-Immunity? Front. Biosci. 2012, 17, 2306–2326, doi:10.2741/4054.
[22]  Nishimura, T.; Andoh, A.; Inatomi, O.; Shioya, M.; Yagi, Y.; Tsujikawa, T.; Fujiyama, Y. Amphiregulin and Epiregulin Expression in Neoplastic and Inflammatory Lesions in the Colon. Oncol. Rep. 2008, 19, 105–110.
[23]  Kallio, J.; Myllymaki, H.; Gronholm, J.; Armstrong, M.; Vanha-aho, L.M.; Makinen, L.; Silvennoinen, O.; Valanne, S.; Ramet, M. Eye Transformer is a Negative Regulator of Drosophila JAK/STAT Signaling. FASEB J. 2010, 24, 4467–4479, doi:10.1096/fj.10-162784.
[24]  Callus, B.A.; Mathey-Prevot, B. SOCS36E, a Novel Drosophila SOCS Protein, Suppresses JAK/STAT and EGF-R Signalling in the Imaginal Wing Disc. Oncogene 2002, 21, 4812–4821, doi:10.1038/sj.onc.1205618.
[25]  Betz, A.; Lampen, N.; Martinek, S.; Young, M.W.; Darnell, J.E., Jr. A Drosophila PIAS Homologue Negatively Regulates stat92E. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 9563–9568.
[26]  Barclay, J.L.; Anderson, S.T.; Waters, M.J.; Curlewis, J.D. Regulation of Suppressor of Cytokine Signaling 3 (SOC3) by Growth Hormone in Pro-B Cells. Mol. Endocrinol. 2007, 21, 2503–2515, doi:10.1210/me.2006-0498.
[27]  Duechting, A.; Tschope, C.; Kaiser, H.; Lamkemeyer, T.; Tanaka, N.; Aberle, S.; Lang, F.; Torresi, J.; Kandolf, R.; Bock, C.T. Human Parvovirus B19 NS1 Protein Modulates Inflammatory Signaling by Activation of STAT3/PIAS3 in Human Endothelial Cells. J. Virol. 2008, 82, 7942–7952, doi:10.1128/JVI.00891-08.
[28]  Ha, E.M.; Oh, C.T.; Ryu, J.H.; Bae, Y.S.; Kang, S.W.; Jang, I.H.; Brey, P.T.; Lee, W.J. An Antioxidant System Required for Host Protection Against Gut Infection in Drosophila. Dev. Cell 2005, 8, 125–132.
[29]  Charroux, B.; Royet, J. Drosophila Immune Response: From Systemic Antimicrobial Peptide Production in Fat Body Cells to Local Defense in the Intestinal Tract. Fly (Austin) 2010, 4, 40–47.
[30]  Vallet-Gely, I.; Lemaitre, B.; Boccard, F. Bacterial Strategies to Overcome Insect Defences. Nat. Rev. Microbiol. 2008, 6, 302–313.
[31]  Pitsouli, C.; Apidianakis, Y.; Perrimon, N. Homeostasis in Infected Epithelia: Stem Cells Take the Lead. Cell Host Microbe 2009, 6, 301–307.
[32]  Ahn, H.M.; Lee, K.S.; Lee, D.S.; Yu, K. JNK/FOXO Mediated PeroxiredoxinV Expression Regulates Redox Homeostasis during Drosophila Melanogaster Gut Infection. Dev. Comp. Immunol. 2012, 38, 466–473.
[33]  Biteau, B.; Hochmuth, C.E.; Jasper, H. JNK Activity in Somatic Stem Cells Causes Loss of Tissue Homeostasis in the Aging Drosophila Gut. Cell Stem Cell 2008, 3, 442–455.
[34]  Wang, M.C.; Bohmann, D.; Jasper, H. JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila. Dev. Cell 2003, 5, 811–816.
[35]  Bae, Y.S.; Choi, M.K.; Lee, W.J. Dual Oxidase in Mucosal Immunity and Host-Microbe Homeostasis. Trends Immunol. 2010, 31, 278–287.
[36]  Wu, H.; Wang, M.C.; Bohmann, D. JNK Protects Drosophila from Oxidative Stress by Trancriptionally Activating Autophagy. Mech. Dev. 2009, 126, 624–637.
[37]  Schneider, D.S.; Ayres, J.S.; Brandt, S.M.; Costa, A.; Dionne, M.S.; Gordon, M.D.; Mabery, E.M.; Moule, M.G.; Pham, L.N.; Shirasu-Hiza, M.M. Drosophila Eiger Mutants are Sensitive to Extracellular Pathogens. PLoS Pathog. 2007, 3, e41.
[38]  Berkey, C.D.; Blow, N.; Watnick, P.I. Genetic Analysis of Drosophila Melanogaster Susceptibility to Intestinal Vibrio Cholerae Infection. Cell Microbiol. 2009, 11, 461–474.
[39]  Bangi, E.; Pitsouli, C.; Rahme, L.G.; Cagan, R.; Apidianakis, Y. Immune Response to Bacteria Induces Dissemination of Ras-Activated Drosophila Hindgut Cells. EMBO Rep. 2012, 13, 569–576.
[40]  Christofi, T.; Apidianakis, Y. Ras-Oncogenic Drosophila Hindgut but Not Midgut Cells use an Inflammation-Like Program to Disseminate to Distant Sites. Gut Microbes 2013, 4, 54–59.
[41]  Latz, E. NOX-Free Inflammasome Activation. Blood 2010, 116, 1393–1394.
[42]  Swanson, P.A., 2nd; Kumar, A.; Samarin, S.; Vijay-Kumar, M.; Kundu, K.; Murthy, N.; Hansen, J.; Nusrat, A.; Neish, A.S. Enteric Commensal Bacteria Potentiate Epithelial Restitution Via Reactive Oxygen Species-Mediated Inactivation of Focal Adhesion Kinase Phosphatases. Proc. Natl. Acad. Sci. USA 2011, 108, 8803–8808.
[43]  Geiszt, M.; Witta, J.; Baffi, J.; Lekstrom, K.; Leto, T.L. Dual Oxidases Represent Novel Hydrogen Peroxide Sources Supporting Mucosal Surface Host Defense. FASEB J. 2003, 17, 1502–1504.
[44]  El Hassani, R.A.; Benfares, N.; Caillou, B.; Talbot, M.; Sabourin, J.C.; Belotte, V.; Morand, S.; Gnidehou, S.; Agnandji, D.; Ohayon, R.; et al. Dual oxidase2 is Expressed all Along the Digestive Tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G933–G942.
[45]  Rokutan, K.; Kawahara, T.; Kuwano, Y.; Tominaga, K.; Nishida, K.; Teshima-Kondo, S. Nox Enzymes and Oxidative Stress in the Immunopathology of the Gastrointestinal Tract. Semin. Immunopathol. 2008, 30, 315–327.
[46]  Matsuzawa, A.; Ichijo, H. Redox Control of Cell Fate by MAP Kinase: Physiological Roles of ASK1-MAP Kinase Pathway in Stress Signaling. Biochim. Biophys. Acta 2008, 1780, 1325–1336.
[47]  Schramm, A.; Matusik, P.; Osmenda, G.; Guzik, T.J. Targeting NADPH Oxidases in Vascular Pharmacology. Vascul Pharmacol. 2012, 56, 216–231.
[48]  Tae Lim, Y.; Sup Song, D.; Joon Won, T.; Lee, Y.J.; Yoo, J.S.; Eun Hyung, K.; Won Yoon, J.; Park, S.Y.; Woo Hwang, K. Peroxiredoxin-1, a Possible Target in Modulating Inflammatory Cytokine Production in Macrophage Like Cell Line RAW264.7. Microbiol. Immunol. 2012, 56, 411–419.
[49]  Bast, A.; Erttmann, S.F.; Walther, R.; Steinmetz, I. Influence of iNOS and COX on Peroxiredoxin Gene Expression in Primary Macrophages. Free Radic. Biol. Med. 2010, 49, 1881–1891.
[50]  Yano, T.; Kurata, S. Intracellular Recognition of Pathogens and Autophagy as an Innate Immune Host Defence. J. Biochem. 2011, 150, 143–149.
[51]  Cadwell, K.; Patel, K.K.; Maloney, N.S.; Liu, T.C.; Ng, A.C.; Storer, C.E.; Head, R.D.; Xavier, R.; Stappenbeck, T.S.; Virgin, H.W. Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine. Cell 2010, 141, 1135–1145.
[52]  Kabi, A.; Nickerson, K.P.; Homer, C.R.; McDonald, C. Digesting the Genetics of Inflammatory Bowel Disease: Insights from Studies of Autophagy Risk Genes. Inflamm. Bowel Dis. 2012, 18, 782–792.
[53]  Hisamatsu, T.; Kanai, T.; Mikami, Y.; Yoneno, K.; Matsuoka, K.; Hibi, T. Immune Aspects of the Pathogenesis of Inflammatory Bowel Disease. Pharmacol. Ther. 2013, 137, 283–297.
[54]  Brest, P.; Lapaquette, P.; Souidi, M.; Lebrigand, K.; Cesaro, A.; Vouret-Craviari, V.; Mari, B.; Barbry, P.; Mosnier, J.F.; Hebuterne, X.; et al. A Synonymous Variant in IRGM Alters a Binding Site for miR-196 and Causes Deregulation of IRGM-Dependent Xenophagy in Crohn's Disease. Nat. Genet. 2011, 43, 242–245.
[55]  Ioannidou, E. Therapeutic Modulation of Growth Factors and Cytokines in Regenerative Medicine. Curr. Pharm. Des. 2006, 12, 2397–2408.
[56]  Broughton, S.E.; Hercus, T.R.; Lopez, A.F.; Parker, M.W. Cytokine Receptor Activation at the Cell Surface. Curr. Opin. Struct. Biol. 2012, 22, 350–359.
[57]  Cutler, A.; Brombacher, F. Cytokine Therapy. Ann. N. Y. Acad. Sci. 2005, 1056, 16–29.
[58]  Feliciani, C.; Gupta, A.K.; Sauder, D.N. Keratinocytes and cytokine/growth Factors. Crit. Rev. Oral Biol. Med. 1996, 7, 300–318.
[59]  Broughton, S.E.; Dhagat, U.; Hercus, T.R.; Nero, T.L.; Grimbaldeston, M.A.; Bonder, C.S.; Lopez, A.F.; Parker, M.W. The GM-CSF/IL-3/IL-5 Cytokine Receptor Family: From Ligand Recognition to Initiation of Signaling. Immunol. Rev. 2012, 250, 277–302.
[60]  Kuraishy, A.; Karin, M.; Grivennikov, S.I. Tumor Promotion Via Injury- and Death-Induced Inflammation. Immunity 2011, 35, 467–477.
[61]  Takashima, S.; Hartenstein, V. Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View. Stem Cell Rev. 2012, 8, 597–608, doi:10.1007/s12015-012-9351-1.
[62]  Singh, S.R.; Mishra, M.K.; Kango-Singh, M.; Hou, S.X. Generation and Staining of Intestinal Stem Cell Lineage in Adult Midgut. Methods Mol. Biol. 2012, 879, 47–69.
[63]  Takashima, S.; Hartenstein, V. Genetic Control of Intestinal Stem Cell Specification and Development: A Comparative View. Stem Cell Rev. 2012, 8, 597–608, doi:10.1007/s12015-012-9351-1.
[64]  Lucchetta, E.M.; Ohlstein, B. The Drosophila Midgut: A Model for Stem Cell Driven Tissue Regeneration. Wiley Interdisciplinary Reviews: Develop. Biol. 2012, 1, 781–788.
[65]  Perdigoto, C.N.; Bardin, A.J. Sending the Right Signal: Notch and Stem Cells. Biochim. Biophys. Acta 2013, 1830, 2307–2322, doi:10.1016/j.bbagen.2012.08.009.
[66]  Fre, S.; Pallavi, S.K.; Huyghe, M.; Lae, M.; Janssen, K.P.; Robine, S.; Artavanis-Tsakonas, S.; Louvard, D. Notch and Wnt Signals Cooperatively Control Cell Proliferation and Tumorigenesis in the Intestine. Proc. Natl. Acad. Sci. USA 2009, 106, 6309–6314, doi:10.1073/pnas.0900427106.
[67]  Fre, S.; Bardin, A.; Robine, S.; Louvard, D. Notch Signaling in Intestinal Homeostasis Across Species: The Cases of Drosophila, Zebrafish and the Mouse. Exp. Cell Res. 2011, 317, 2740–2747, doi:10.1016/j.yexcr.2011.06.012.
[68]  Takashima, S.; Mkrtchyan, M.; Younossi-Hartenstein, A.; Merriam, J.R.; Hartenstein, V. The Behaviour of Drosophila Adult Hindgut Stem Cells is Controlled by Wnt and Hh Signalling. Nature 2008, 454, 651–655.
[69]  Kosinski, C.; Stange, D.E.; Xu, C.; Chan, A.S.; Ho, C.; Yuen, S.T.; Mifflin, R.C.; Powell, D.W.; Clevers, H.; Leung, S.Y.; et al. Indian Hedgehog Regulates Intestinal Stem Cell Fate through Epithelial-Mesenchymal Interactions during Development. Gastroenterology 2010, 139, 893–903, doi:10.1053/j.gastro.2010.06.014.
[70]  Fevr, T.; Robine, S.; Louvard, D.; Huelsken, J. Wnt/beta-Catenin is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells. Mol. Cell Biol. 2007, 27, 7551–7559, doi:10.1128/MCB.01034-07.
[71]  Yeung, T.M.; Chia, L.A.; Kosinski, C.M.; Kuo, C.J. Regulation of Self-Renewal and Differentiation by the Intestinal Stem Cell Niche. Cell Mol. Life Sci. 2011, 68, 2513–2523, doi:10.1007/s00018-011-0687-5.
[72]  Jiang, H.; Edgar, B.A. Intestinal Stem Cell Function in Drosophila and Mice. Curr. Opin. Genet. Dev. 2012, 22, 354–360, doi:10.1016/j.gde.2012.04.002.
[73]  Xu, N.; Wang, S.Q.; Tan, D.; Gao, Y.; Lin, G.; Xi, R. EGFR, Wingless and JAK/STAT Signaling Cooperatively Maintain Drosophila Intestinal Stem Cells. Dev. Biol. 2011, 354, 31–43, doi:10.1016/j.ydbio.2011.03.018.
[74]  Jiang, H.; Grenley, M.O.; Bravo, M.J.; Blumhagen, R.Z.; Edgar, B.A. EGFR/Ras/MAPK Signaling Mediates Adult Midgut Epithelial Homeostasis and Regeneration in Drosophila. Cell Stem Cell 2011, 8, 84–95, doi:10.1016/j.stem.2010.11.026.
[75]  Osman, D.; Buchon, N.; Chakrabarti, S.; Huang, Y.T.; Su, W.C.; Poidevin, M.; Tsai, Y.C.; Lemaitre, B. Autocrine and Paracrine Unpaired Signalling Regulate Intestinal Stem Cell Maintenance and Division. J. Cell Sci. 2012, 125, 5944–5949, doi:10.1242/jcs.113100.
[76]  Liu, W.; Singh, S.R.; Hou, S.X. JAK-STAT is Restrained by Notch to Control Cell Proliferation of the Drosophila Intestinal Stem Cells. J. Cell Biochem. 2010, 109, 992–999.
[77]  Lin, G.; Xu, N.; Xi, R. Paracrine Unpaired Signaling through the JAK/STAT Pathway Controls Self-Renewal and Lineage Differentiation of Drosophila Intestinal Stem Cells. J. Mol. Cell Biol. 2010, 2, 37–49, doi:10.1093/jmcb/mjp028.
[78]  Sato, T.; van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; van den Born, M.; Barker, N.; Shroyer, N.F.; van de Wetering, M.; Clevers, H. Paneth Cells Constitute the Niche for Lgr5 Stem Cells in Intestinal Crypts. Nature 2011, 469, 415–418.
[79]  Yeung, T.M.; Chia, L.A.; Kosinski, C.M.; Kuo, C.J. Regulation of Self-Renewal and Differentiation by the Intestinal Stem Cell Niche. Cell Mol. Life Sci. 2011, 68, 2513–2523, doi:10.1007/s00018-011-0687-5.
[80]  O'Brien, L.E.; Soliman, S.S.; Li, X.; Bilder, D. Altered Modes of Stem Cell Division Drive Adaptive Intestinal Growth. Cell 2011, 147, 603–614, doi:10.1016/j.cell.2011.08.048.
[81]  De Navascues, J.; Perdigoto, C.N.; Bian, Y.; Schneider, M.H.; Bardin, A.J.; Martinez-Arias, A.; Simons, B.D. Drosophila Midgut Homeostasis Involves Neutral Competition between Symmetrically Dividing Intestinal Stem Cells. EMBO J. 2012, 31, 2473–2485, doi:10.1038/emboj.2012.106.
[82]  Snippert, H.J.; van der Flier, L.G.; Sato, T.; van Es, J.H.; van den Born, M.; Kroon-Veenboer, C.; Barker, N.; Klein, A.M.; van Rheenen, J.; Simons, B.D.; et al. Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells. Cell 2010, 143, 134–144, doi:10.1016/j.cell.2010.09.016.
[83]  Kocks, C.; Cho, J.H.; Nehme, N.; Ulvila, J.; Pearson, A.M.; Meister, M.; Strom, C.; Conto, S.L.; Hetru, C.; Stuart, L.M.; et al. Eater, a Transmembrane Protein Mediating Phagocytosis of Bacterial Pathogens in Drosophila. Cell 2005, 123, 335–346, doi:10.1016/j.cell.2005.08.034.
[84]  Nehme, N.T.; Liegeois, S.; Kele, B.; Giammarinaro, P.; Pradel, E.; Hoffmann, J.A.; Ewbank, J.J.; Ferrandon, D. A Model of Bacterial Intestinal Infections in Drosophila Melanogaster. PLoS Pathog. 2007, 3, e173, doi:10.1371/journal.ppat.0030173.
[85]  Jiang, H.; Edgar, B.A. Intestinal Stem Cells in the Adult Drosophila Midgut. Exp. Cell Res. 2011, 317, 2780–2788, doi:10.1016/j.yexcr.2011.07.020.
[86]  Buchon, N.; Broderick, N.A.; Kuraishi, T.; Lemaitre, B. Drosophila EGFR Pathway Coordinates Stem Cell Proliferation and Gut Remodeling Following Infection. BMC Biol. 2010, 8, 152, doi:10.1186/1741-7007-8-152.
[87]  Ren, F.; Wang, B.; Yue, T.; Yun, E.Y.; Ip, Y.T.; Jiang, J. Hippo Signaling Regulates Drosophila Intestine Stem Cell Proliferation through Multiple Pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 21064–21069.
[88]  Zhou, F.; Rasmussen, A.; Lee, S.; Agaisse, H. The upd3 Cytokine Couples Environmental Challenge and Intestinal Stem Cell Division through Modulation of JAK/STAT Signaling in the Stem Cell Microenvironment. Dev. Biol. 2012, 373, 383–393.
[89]  Cordero, J.B.; Stefanatos, R.K.; Scopelliti, A.; Vidal, M.; Sansom, O.J. Inducible Progenitor-Derived Wingless Regulates Adult Midgut Regeneration in Drosophila. EMBO J. 2012, 31, 3901–3917, doi:10.1038/emboj.2012.248.
[90]  Buchon, N.; Broderick, N.A.; Chakrabarti, S.; Lemaitre, B. Invasive and Indigenous Microbiota Impact Intestinal Stem Cell Activity through Multiple Pathways in Drosophila. Genes Dev. 2009, 23, 2333–2344, doi:10.1101/gad.1827009.
[91]  Apidianakis, Y.; Pitsouli, C.; Perrimon, N.; Rahme, L. Synergy between Bacterial Infection and Genetic Predisposition in Intestinal Dysplasia. Proc. Natl. Acad. Sci. USA 2009, 106, 20883–20888.
[92]  Arthur, J.C.; Perez-Chanona, E.; Muhlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science 2012, 338, 120–123, doi:10.1126/science.1224820.
[93]  Ben-Neriah, Y.; Karin, M. Inflammation Meets Cancer, with NF-kappaB as the Matchmaker. Nat. Immunol. 2011, 12, 715–723, doi:10.1038/ni.2060.
[94]  Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; et al. IL-6 and Stat3 are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer. Cancer. Cell 2009, 15, 103–113, doi:10.1016/j.ccr.2009.01.001.
[95]  Vermeulen, L.; De Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; et al. Wnt Activity Defines Colon Cancer Stem Cells and is Regulated by the Microenvironment. Nat. Cell Biol. 2010, 12, 468–476, doi:10.1038/ncb2048.
[96]  Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and Colon Cancer. Gastroenterology 2010, 138, 2101–2114.e5.
[97]  Buchon, N.; Broderick, N.A.; Poidevin, M.; Pradervand, S.; Lemaitre, B. Drosophila Intestinal Response to Bacterial Infection: Activation of Host Defense and Stem Cell Proliferation. Cell Host Microbe 2009, 5, 200–211, doi:10.1016/j.chom.2009.01.003.
[98]  Ryu, J.H.; Ha, E.M.; Lee, W.J. Innate Immunity and Gut-Microbe Mutualism in Drosophila. Dev. Comp. Immunol. 2010, 34, 369–376, doi:10.1016/j.dci.2009.11.010.
[99]  Shia, A.K.; Glittenberg, M.; Thompson, G.; Weber, A.N.; Reichhart, J.M.; Ligoxygakis, P. Toll-Dependent Antimicrobial Responses in Drosophila Larval Fat Body Require Spatzle Secreted by Haemocytes. J. Cell Sci. 2009, 122, 4505–4515, doi:10.1242/jcs.049155.
[100]  Brennan, C.A.; Delaney, J.R.; Schneider, D.S.; Anderson, K.V. Psidin is Required in Drosophila Blood Cells for both Phagocytic Degradation and Immune Activation of the Fat Body. Curr. Biol. 2007, 17, 67–72, doi:10.1016/j.cub.2006.11.026.
[101]  Agaisse, H.; Perrimon, N. The Roles of JAK/STAT Signaling in Drosophila Immune Responses. Immunol. Rev. 2004, 198, 72–82, doi:10.1111/j.0105-2896.2004.0133.x.
[102]  Pastor-Pareja, J.C.; Wu, M.; Xu, T. An Innate Immune Response of Blood Cells to Tumors and Tissue Damage in Drosophila. Dis. Model. Mech. 2008, 1, 144–154; discussion 153.
[103]  Wu, S.C.; Liao, C.W.; Pan, R.L.; Juang, J.L. Infection-Induced Intestinal Oxidative Stress Triggers Organ-to-Organ Immunological Communication in Drosophila. Cell Host Microbe 2012, 11, 410–417, doi:10.1016/j.chom.2012.03.004.
[104]  Foley, E.; O'Farrell, P.H. Nitric Oxide Contributes to Induction of Innate Immune Responses to Gram-Negative Bacteria in Drosophila. Genes Dev. 2003, 17, 115–125, doi:10.1101/gad.1018503.
[105]  Charroux, B.; Royet, J. Gut-Microbiota Interactions in Non-Mammals: What can we Learn from Drosophila? Semin. Immunol. 2012, 24, 17–24, doi:10.1016/j.smim.2011.11.003.
[106]  Broderick, N.A.; Lemaitre, B. Gut-Associated Microbes of Drosophila Melanogaster. Gut Microbes 2012, 3, 307–321, doi:10.4161/gmic.19896.
[107]  Storelli, G.; Defaye, A.; Erkosar, B.; Hols, P.; Royet, J.; Leulier, F. Lactobacillus Plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through TOR-Dependent Nutrient Sensing. Cell Metab. 2011, 14, 403–414.
[108]  Cox, C.R.; Gilmore, M.S. Native Microbial Colonization of Drosophila Melanogaster and its use as a Model of Enterococcus Faecalis Pathogenesis. Infect. Immun. 2007, 75, 1565–1576, doi:10.1128/IAI.01496-06.
[109]  An, D.; Apidianakis, Y.; Boechat, A.L.; Baldini, R.L.; Goumnerov, B.C.; Rahme, L.G. The Pathogenic Properties of a Novel and Conserved Gene Product, KerV, in Proteobacteria. PLoS One 2009, 4, e7167.
[110]  Apidianakis, Y.; Mindrinos, M.N.; Xiao, W.; Lau, G.W.; Baldini, R.L.; Davis, R.W.; Rahme, L.G. Profiling Early Infection Responses: Pseudomonas Aeruginosa Eludes Host Defenses by Suppressing Antimicrobial Peptide Gene Expression. Proc. Natl. Acad. Sci. USA 2005, 102, 2573–2578.
[111]  Shin, S.C.; Kim, S.H.; You, H.; Kim, B.; Kim, A.C.; Lee, K.A.; Yoon, J.H.; Ryu, J.H.; Lee, W.J. Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis Via Insulin Signaling. Science 2011, 334, 670–674, doi:10.1126/science.1212782.
[112]  Ryu, J.H.; Kim, S.H.; Lee, H.Y.; Bai, J.Y.; Nam, Y.D.; Bae, J.W.; Lee, D.G.; Shin, S.C.; Ha, E.M.; Lee, W.J. Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila. Science 2008, 319, 777–782, doi:10.1126/science.1149357.
[113]  Ha, E.M.; Lee, K.A.; Seo, Y.Y.; Kim, S.H.; Lim, J.H.; Oh, B.H.; Kim, J.; Lee, W.J. Coordination of Multiple Dual Oxidase-Regulatory Pathways in Responses to Commensal and Infectious Microbes in Drosophila Gut. Nat. Immunol. 2009, 10, 949–957, doi:10.1038/ni.1765.
[114]  Shanahan, F. The Colonic Microbiota in Health and Disease. Curr. Opin. Gastroenterol. 2013, 29, 49–54, doi:10.1097/MOG.0b013e32835a3493.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413