全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pathogens  2013 

Goblet Cells and Mucins: Role in Innate Defense in Enteric Infections

DOI: 10.3390/pathogens2010055

Keywords: Goblet cells, mucins, enteric infection, innate defense

Full-Text   Cite this paper   Add to My Lib

Abstract:

Goblet cells reside throughout the gastrointestinal (GI) tract and are responsible for the production and preservation of a protective mucus blanket by synthesizing and secreting high molecular weight glycoproteins known as mucins. The concept of the mucus layer functioning as a dynamic protective barrier is suggested by studies showing changes in mucins in inflammatory conditions of the GI tract, by the altered goblet cell response in germ-free animals, and by the enhanced mucus secretion seen in response to infections. The mucin-containing mucus layer coating the GI epithelium is the front line of innate host defense. Mucins are likely to be the first molecules that invading pathogens interact with at the cell surface and thus, can limit binding to other glycoproteins and neutralize the pathogen. This review will focus on what is known about goblet cell response in various GI infections and the regulatory networks that mediate goblet cell function and mucin production in response to intestinal insults. In addition, we describe the current knowledge on the role of mucins in intestinal innate defense. It is the aim of this review to provide the readers with an update on goblet cell biology and current understanding on the role of mucins in host defense in enteric infections.

References

[1]  Neutra, M.R.; Forstner, J.F. Gastrointestinal mucus: synthesis, secretion, and function. In Physiology of the Gastrointestinal Tract; Johnson, L.R., Ed.; Raven: New York, NY, USA, 1987.
[2]  Khan, W.I. Physiological changes in the gastrointestinal tract and host protective immunity: learning from the mouse-Trichinella spiralis model. Parasitology 2008, 135, 671–682.
[3]  Forstner, J.F. Intestinal mucins in health and disease. Digestion 1978, 17, 234–263, doi:10.1159/000198115.
[4]  Allen, A. Physiology of Gastrointestinal Tract; Johnson, L.R., Ed.; Raven Press: New York, NY, USA, 1981; pp. 617–639.
[5]  Specian, R.D.; Oliver, M.G. Functional biology of intestinal goblet cells. Am. J. Physiol. 1991, 260, C183–C193.
[6]  Kandori, H.; Hirayama, K.; Takeda, M.; Doi, K. Histochemical, lectin-histochemical and morphometrical characteristics of intestinal goblet cells of germ-free and conventional mice. Exp. Animal 1996, 45, 155–160, doi:10.1538/expanim.45.155.
[7]  Miller, H.R.P. Gastrointestinal mucus, a medium for survival and for elimination of parasitic nematodes and protozoa. Parasitology 1987, 94, S77–S100, doi:10.1017/S0031182000085838.
[8]  Corfield, A.P.; Myerscough, N.; Longman, R.; Sylvester, P.; Arul, S.; Pignatelli, M. Mucins and mucosal protection in the gastrointestinal tract: New prospects for mucins in the pathology of gastrointestinal disease. Gut 2000, 47, 589–594, doi:10.1136/gut.47.4.589.
[9]  Boshuizen, J.A.; Reimerink, J.H.; Korteland-van Male, A.M.; van Ham, V.J.; Bouma, J.; Gerwig, G.J.; Koopmans, M.P.; Büller, H.A.; Dekker, J.; Einerhand, A.W. Virology 2005, 337, 210–221, doi:10.1016/j.virol.2005.03.039.
[10]  Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 2012, 15, 57–62, doi:10.1016/j.mib.2011.11.002.
[11]  Podolsky, D.K.; Isselbacher, K.J. Composition of human colonic mucin. Selective alteration in inflammatory bowel disease. J. Clin. Invest. 1983, 72, 142–153, doi:10.1172/JCI110952.
[12]  Allen, A.; Hutton, D.A.; Pearson, J.P. The MUC2 gene product: a human intestinal mucin. Int. J. Biochem. Cell Biol. 1998, 30, 797–801, doi:10.1016/S1357-2725(98)00028-4.
[13]  Crabtree, J.E.; Heatley, R.V.; Losowsky, M.S. Glycoprotein synthesis and secretion by cultured small intestinal mucosa in coeliac disease. Gut 1989, 30, 1339–1343.
[14]  Gordon, J.I.; Schmidt, G.H.; Roth, K.A. Studies of intestinal stem cells using normal, chimeric, and transgenic mice. FASEB J. 1992, 6, 3039–3050.
[15]  Booth, C.; Potten, C.S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 2000, 105, 1493–1499, doi:10.1172/JCI10229.
[16]  Marshman, E.; Booth, C.; Potten, C.S. The intestinal epithelial stem cell. Bioessays 2002, 24, 91–98, doi:10.1002/bies.10028.
[17]  Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330, doi:10.1007/s11894-010-0131-2.
[18]  Merzel, J.; Leblond, C.P. Origin and renewal of goblet cells in the epithelium of the mouse small intestine. Am. J. Anat. 1969, 124, 281–306, doi:10.1002/aja.1001240303.
[19]  Radwan, K.A.; Oliver, M.G.; Specian, R.D. Cytoarchitectural reorganization of rabbit colonic goblet cells during baseline secretion. Am. J. Anat. 1990, 189, 365–376, doi:10.1002/aja.1001890408.
[20]  van der Flier, L.G.; Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009, 71, 241–260, doi:10.1146/annurev.physiol.010908.163145.
[21]  Yang, Q.; Bermingham, N.A.; Finegold, M.J.; Zoghbi, H.Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001, 294, 2155–2158, doi:10.1126/science.1065718.
[22]  Hasnain, S.Z.; Gallagher, A.L.; Grencis, R.K.; Thornton, D.J. A new role for mucins in immunity: Insights from gastrointestinal nematode infection. Int. J. Biochem. Cell Biol. 2013, 45, 364–374, doi:10.1016/j.biocel.2012.10.011.
[23]  Strugnell, R.A.; Wijburg, O.L. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 2010, 8, 656–667, doi:10.1038/nrmicro2384.
[24]  Phalipon, A.; Cardona, A.; Kraehenbuhl, J.P.; Edelman, L.; Sansonetti, P.J.; Corthésy, B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002, 17, 107–115, doi:10.1016/S1074-7613(02)00341-2.
[25]  Bruno, L.S.; Li, X.; Wang, L.; Soares, R.V.; Siqueira, C.C.; Oppenheim, F.G.; Troxler, R.F.; Offner, G.D. Two-hybrid analysis of human salivary mucin MUC7 interactions. Biochim. Biophys. Acta. 2005, 1746, 65–72, doi:10.1016/j.bbamcr.2005.08.007.
[26]  Iontcheva, I.; Oppenheim, F.G.; Troxler, R.F. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J. Dent. Res. 1997, 76, 734–743, doi:10.1177/00220345970760030501.
[27]  Forstner, J.; Taichman, N.; Kalnins, V.; Forstner, G. Intestinal goblet cell mucus: isolation and identification by immunofluorescence of a goblet cell glycoprotein. J. Cell Sci. 1973, 12, 585–602.
[28]  Johansson, M.E.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 2008, 105, 15064–15069, doi:10.1073/pnas.0803124105.
[29]  Wesley, A.; Mantle, M.; Man, D.; Qureshi, R.; Forstner, G.; Forstner, J. Neutral and acidic species of human intestinal mucin. Evidence for different core peptides. J. Biol. Chem. 1985, 260, 7955–7959.
[30]  Fahim, R.E.F.; Forstner, G.G.; Forstner, J.F. Heterogeneity of rat goblet-cell mucin before and after reduction. Biochem. J. 1983, 209, 117–124.
[31]  Strous, G.J. Initial glycosylation of proteins with acetylgalactosaminylserine linkages. Proc. Natl. Acad. Sci. USA 1979, 76, 2694–2698, doi:10.1073/pnas.76.6.2694.
[32]  Frick, L.P.; Ackert, J.E. Further studies on duodenal mucus as a factor in age resistance of chickens to parasitism. Frick Ackert J. Parasitol. 1984, 34, 192–206.
[33]  Ishikawa, N.; Wakelin, D.; Mahida, Y.R. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology 1997, 113, 542–549.
[34]  Khan, W.I.; Collins, S.M. Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunol. 2004, 26, 319–326, doi:10.1111/j.0141-9838.2004.00715.x.
[35]  Miller, H.R.; Nawa, Y. Nippostrongylus brasiliensis: intestinal goblet-cell response in adoptively immunized rats. Exp. Parasitol. 1979, 47, 81–90, doi:10.1016/0014-4894(79)90010-9.
[36]  Khan, W.I.; Abe, T.; Ishikawa, N.; Nawa, Y.; Yoshimura, K. Reduced amount of intestinal mucus by treatment with anti-CD4 antibody interferes with the spontaneous cure of Nippostrongylus brasiliensis-infection in mice. Parasite Immunol. 1995, 17, 485–491, doi:10.1111/j.1365-3024.1995.tb00919.x.
[37]  Hasnain, S.Z.; Wang, H.; Ghia, J.E.; Haq, N.; Deng, Y.; Velcich, A.; Grencis, R.K.; Thornton, D.J.; Khan, W.I. Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection. Gastroenterology 2010, 138, 1763–1771.
[38]  Hasnain, S.Z.; Evans, C.M.; Roy, M.; Gallagher, A.L.; Kindrachuk, K.N.; Barron, L.; Dickey, B.F.; Wilson, M.S.; Wynn, T.A.; Grencis, R.K.; Thornton, D.J. Muc5ac: a critical component mediating the rejection of enteric nematodes. J. Exp. Med. 2011, 208, 893–900, doi:10.1084/jem.20102057.
[39]  Koninkx, J.F.; Mirck, M.H.; Hendriks, H.G.; Mouwen, J.M.; Van Dijk, J.E. Nippostrongylus brasiliensis: histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp. Parasitol. 1988, 65, 84–90, doi:10.1016/0014-4894(88)90109-9.
[40]  Ishikawa, N.; Horii, Y.; Nawa, Y. Immune-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology 1993, 78, 303–307.
[41]  Miller, H.R. Gastrointestinal mucus, a medium for survival and for elimination of parasitic nematodes and protozoa. Parasitology 1987, 94, S77–100, doi:10.1017/S0031182000085838.
[42]  McDole, J.R.; Wheeler, L.W.; McDonald, K.G.; Wang, B.; Konjufca, V.; Knoop, K.A.; Newberry, R.D.; Miller, M.J. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012, 483, 345–349.
[43]  Shekels, L.L.; Anway, R.E.; Lin, J.; Kennedy, M.W.; Garside, P.; Lawrence, C.E.; Ho, S.B. Coordinated Muc2 and Muc3 mucin gene expression in Trichinella spiralis infection in wild-type and cytokine-deficient mice. Dig. Dis. Sci. 2001, 46, 1757–1764, doi:10.1023/A:1010622125040.
[44]  Karlsson, N.G.; Olson, F.J.; Jovall, P.A.; Andersch, Y.; Enerback, L.; Hansson, G.C. Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochem. J. 2000, 350, 805–814, doi:10.1042/0264-6021:3500805.
[45]  Olson, F.J.; Johansson, M.E.; Klinga-Levan, K.; Bouhours, D.; Enerb?ck, L.; Hansson, G.C.; Karlsson, N.G. Blood group A glycosyltransferase occurring as alleles with high sequence difference is transiently induced during a Nippostrongylus brasiliensis parasite infection. J. Biol. Chem. 2002, 277, 15044–15052.
[46]  Belley, A.; Keller, K.; Gottke, M.; Chadee, K. Intestinal mucins in colonization and host defense against pathogens. Am. J. Trop. Med. Hyg. 1999, 60, 10–15.
[47]  Belley, A.; Chadee, K. Prostaglandin E(2) stimulates rat and human colonic mucin exocytosis via the EP(4) receptor. Gastroenterology 1999, 117, 1352–1362, doi:10.1016/S0016-5085(99)70285-4.
[48]  Dharmani, P.; Srivastava, V.; Kissoon-Singh, V.; Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate. Immun. 2009, 1, 123–135, doi:10.1159/000163037.
[49]  Ravdin, J.I.; Guerrant, R.L. Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. J. Clin. Invest. 1981, 68, 1305–1313, doi:10.1172/JCI110377.
[50]  Belley, A.; Keller, K.; Grove, J.; Chadee, K. Interaction of LS174T human colon cancer cell mucins with Entamoeba histolytica: an in vitro model for colonic disease. Gastroenterology 1996, 111, 1484–1492, doi:10.1016/S0016-5085(96)70009-4.
[51]  Moncada, D.; Keller, K.; Chadee, K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect. Immun. 2003, 71, 838–844, doi:10.1128/IAI.71.2.838-844.2003.
[52]  Pakandl, M.; Grubhoffer, L. Some properties of sialic acid binding systems in Tritrichomonas suis and Tritrichomonas foetus. Comp. Biochem. Physiol. 1994, 108, 529–536.
[53]  Babal, P.; Pindak, F.F. Purification and basic characteristics of sialidase from Tritrichomonas mobilensis. Folia Biol. 1995, 41, 319–329.
[54]  Zenian, A.; Gillin, F.D. Interactions of Giardia lamblia with human intestinal mucus: enhancement of trophozoite attachment to glass. J. Protozool. 1985, 32, 664–668.
[55]  Van den Brink, G.R.; Tytgat, K.M.; Van der Hulst, R.W.; Van der Loos, C.M.; Einerhand, A.W.; Buller, H.A.; Dekker, J. H. pylori colocalises with MUC5AC in the human stomach. Gut 2000, 46, 601–607, doi:10.1136/gut.46.5.601.
[56]  Van de Bovenkamp, J.H.; Mahdavi, J.; Korteland-Van Male, A.M.; Büller, H.A.; Einerhand, A.W.; Borén, T.; Dekker, J. The MUC5AC glycoprotein is the primary receptor for Helicobacter pylori in the human stomach. Helicobacter 2003, 8, 521–532, doi:10.1046/j.1523-5378.2003.00173.x.
[57]  Vinall, L.E.; King, M.; Novelli, M.; Green, C.A.; Daniels, G.; Hilkens, J.; Sarner, M.; Swallow, D.M. Altered expression and allelic association of the hypervariable membrane mucin MUC1 in Helicobacter pylori gastritis. Gastroenterology 2002, 123, 41–49, doi:10.1053/gast.2002.34157.
[58]  Ottemann, K.M.; Lowenthal, A.C. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 2002, 70, 1984–1990, doi:10.1128/IAI.70.4.1984-1990.2002.
[59]  Micots, I.; Augeron, C.; Laboisse, C.L.; Muzeau, F.; Mégraud, F. Mucin exocytosis: a major target for Helicobacter pylori. J. Clin. Pathol. 1993, 46, 241–245.
[60]  Tanaka, S.; Mizuno, M.; Maga, T.; Yoshinaga, F.; Tomoda, J.; Nasu, J.; Okada, H.; Yokota, K.; Oguma, K.; Shiratori, Y.; Tsuji, T.H. pylori decreases gastric mucin synthesis via inhibition of galactosyltransferase. Hepatogastroenterology 2003, 50, 1739–1742.
[61]  Morgenstern, S.; Koren, R.; Moss, S.F.; Fraser, G.; Okon, E.; Niv, Y. Does Helicobacter pylori affect gastric mucin expression? Relationship between gastric antral mucin expression and H. pylori colonization. Eur. J. Gastroenterol. Hepatol. 2001, 13, 19–23, doi:10.1097/00042737-200101000-00004.
[62]  Styer, C.M.; Hansen, L.M.; Cooke, C.L.; Gundersen, A.M.; Choi, S.S.; Berg, D.E.; Benghezal, M.; Marshall, B.J.; Peek, R.M.; Boren, T.; Solnick, J.V. Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect. Immun. 2010, 78, 1593–1600, doi:10.1128/IAI.01297-09.
[63]  Boren, T.; Falk, P.; Roth, K.A.; Larson, G.; Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993, 262, 1892–1895.
[64]  Moore, M.E.; Boren, T.; Solnick, J.V. Life at the margins: modulation of attachment proteins in Helicobacter pylori. Gut Microbes 2011, 2, 42–46.
[65]  Worku, M.L.; Sidebotham, R.L.; Baron, J.H.; Misiewicz, J.J.; Logan, R.P.; Keshavarz, T.; Karim, Q.N. Motility of Helicobacter pylori in a viscous environment. Eur. J. Gastroenterol. Hepatol. 1999, 11, 1143–1150, doi:10.1097/00042737-199910000-00012.
[66]  Ota, H.; Nakayama, J.; Momose, M.; Hayama, M.; Akamatsu, T.; Katsuyama, T.; Graham, D.Y.; Genta, R.M. Helicobacter pylori infection produces reversible glycosylation changes to gastric mucins. Virchows Arch. 1998, 433, 419–426, doi:10.1007/s004280050269.
[67]  Linden, S.K.; Sutton, P.; Karlsson, N.G.; Korolik, V.; McGuckin, M.A. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008, 1, 183–197, doi:10.1038/mi.2008.5.
[68]  Songhet, P.; Berthel, M.; Stecher, B.; Muller, A.J.; Kremer, M.; Hansson, G.C.; Hardt, W.D. Stromal IFN-γR-signaling modulates goblet cell function during Salmonella typhimurium infection. PLoS ONE 2011, 6, e22459.
[69]  Jarry, A.; Merlin, D.; Velcich, A.; Hopfer, U.; Augenlicht, L.H.; Laboisse, C.L. Interferon-gamma modulates cAMP-induced mucin exocytosis without affecting mucin gene expression in a human colonic goblet cell line. Eur. J. Pharmacol. 1994, 267, 95–103, doi:10.1016/0922-4106(94)90229-1.
[70]  Bergstrom, K.S.; Kissoon-Singh, V.; Gibson, D.L.; Ma, C.; Montero, M.; Sham, H.P.; Ryz, N.; Huang, T.; Velcich, A.; Finlay, B.B.; Chadee, K.; Vallance, B.A. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 2010, 6, e1000902.
[71]  Mantle, M.; Husar, S.D. Binding of Yersinia enterocolitica to purified, native small intestinal mucins from rabbits and humans involves interactions with the mucin carbohydrate moiety. Infect. Immun. 1994, 62, 1219–1227.
[72]  Nutten, S.; Sansonetti, P.; Huet, G.; Bourdon-Bisiaux, C.; Meresse, B.; Colombel, J.F.; Desreumaux, P. Epithelial inflammation response induced by Shigella flexneri depends on mucin gene expression. Microbes Infect. 2002, 4, 1121–1124, doi:10.1016/S1286-4579(02)01636-2.
[73]  Liévin-Le Moal, V.; Servin, A.L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 2006, 19, 315–337, doi:10.1128/CMR.19.2.315-337.2006.
[74]  Fukata, M.; Abreu, M.T. Pathogen recognition receptors, cancer and inflammation in the gut. Curr. Opin. Pharmacol. 2009, 9, 680–687, doi:10.1016/j.coph.2009.09.006.
[75]  Galdeano, C.M.; de Moreno de LeBlanc, A.; Vinderola, G.; Bonet, M.E.; Perdigon, G. Proposed model: mechanisms of immunomodulation induced by probiotic bacteria. Clin. Vaccine Immunol. 2007, 14, 485–492, doi:10.1128/CVI.00406-06.
[76]  Johnson-Henry, K.C.; Mitchell, D.J.; Avitzur, Y.; Galindo-Mata, E.; Jones, N.L.; Sherman, P.M. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice. Dig. Dis. Sci. 2004, 49, 1095–1102, doi:10.1023/B:DDAS.0000037794.02040.c2.
[77]  Mack, D.R.; Michail, S.; Wei, S.; McDougall, L.; Hollingsworth, M.A. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am. J. Physiol. 1999, 276, G941–G950.
[78]  Hayes, K.S.; Bancroft, A.J.; Goldrick, M.; Portsmouth, C.; Roberts, I.S.; Grencis, R.K. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 2010, 328, 1391–1394, doi:10.1126/science.1187703.
[79]  Boshuizen, J.A.; Reimerink, J.H.; Korteland-van Male, A.M.; van Ham, V.J.; Bouma, J.; Gerwig, G.J.; Koopmans, M.P.; Büller, H.A.; Dekker, J.; Einerhand, A.W. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology 2005, 337, 210–221, doi:10.1016/j.virol.2005.03.039.
[80]  Davis, C.W.; Dickey, B.F. Regulated airway goblet cell mucin secretion. Annu. Rev. Physiol. 2008, 70, 487–512, doi:10.1146/annurev.physiol.70.113006.100638.
[81]  McCool, D.J.; Marcon, M.A.; Forstner, J.F.; Forstner, G.G. The T84 human colonic adenocarcinoma cell line produces mucin in culture and releases it in response to various secretagogues. Biochem. J. 1990, 267, 491–500.
[82]  Crabtree, J.E.; Heatley, R.V.; Losowsky, M.S. Glycoprotein synthesis and secretion by cultured small intestinal mucosa in coeliac disease. Gut 1989, 30, 1339–1343, doi:10.1136/gut.30.10.1339.
[83]  Else, K.J.; Finkelman, F.D. Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol. 1998, 28, 1145–1158, doi:10.1016/S0020-7519(98)00087-3.
[84]  Grencis, R.K. Th2-mediated host protective immunity to intestinal nematode infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 1377–1384, doi:10.1098/rstb.1997.0123.
[85]  Helmby, H.; Grencis, R.K. Contrasting roles for IL-10 in protective immunity to different life cycle stages of intestinal nematode parasites. Eur. J. Immunol. 2003, 33, 2382–2390, doi:10.1002/eji.200324082.
[86]  Khan, W.I.; Blennerhassett, P.A.; Ma, C.; Collins, S.M. Stat6 dependent goblet cell hyperplasia during intestinal nematode infection. Parasite Immunol. 2001, 23, 39–42, doi:10.1046/j.1365-3024.2001.00353.x.
[87]  Khan, W.I.; Blennerhassett, P.A.; Deng, Y.; Gauldie, J.; Vallance, B.A.; Collins, S.M. IL-12 gene transfer alters gut physiology and host immunity in nematode-infected mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G102–G110.
[88]  Aujla, S.J.; Chan, Y.R.; Zheng, M.; Fei, M.; Askew, D.J.; Pociask, D.A.; Reinhart, T.A.; McAllister, F.; Edeal, J.; Gaus, K.; Husain, S.; Kreindler, J.L.; Dubin, P.J.; Pilewski, J.M.; Myerburg, M.M.; Mason, C.A.; Iwakura, Y.; Kolls, J.K. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 2008, 14, 275–281.
[89]  Sugimoto, K.; Ogawa, A.; Mizoguchi, E.; Shimomura, Y.; Andoh, A.; Bhan, A.K.; Blumberg, R.S.; Xavier, R.J.; Mizoguchi, A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 2008, 118, 534–544.
[90]  Hasnain, S.Z.; Tauro, S.; Das, I.; Tong, H.; Chen, A.C.; Jeffery, P.L.; McDonald, V.; Florin, T.H.; McGuckin, M.A. IL-10 Promotes Production of Intestinal Mucus by Suppressing Protein Misfolding and Endoplasmic Reticulum Stress in Goblet Cells. Gastroenterology 2012, 144, 357–368.e9.
[91]  Thim, L.; Madsen, F.; Poulsen, S.S. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. J. Clin. Invest. 2002, 32, 519–527, doi:10.1046/j.1365-2362.2002.01014.x.
[92]  Blanchard, C.; Durual, S.; Estienne, M.; Bouzakri, K.; Heim, M.H.; Blin, N.; Cuber, J.C. IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J. Immunol. 2004, 172, 3775–3783.
[93]  Iwashita, J.; Sato, Y.; Sugaya, H.; Takahashi, N.; Sasaki, H.; Abe, T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol. Cell Biol. 2003, 81, 275–282, doi:10.1046/j.1440-1711.2003.t01-1-01163.x.
[94]  Dabbagh, K.; Takeyama, K.; Lee, H.M.; Ueki, I.F.; Lausier, J.A.; Nadel, J.A. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. J. Immunol. 1999, 162, 6233–6237.
[95]  Hasnain, S.Z.; Thornton, D.J.; Grencis, R.K. Changes in the mucosal barrier during acute and chronic Trichuris muris infection. Parasite Immunol. 2011, 33, 45–55, doi:10.1111/j.1365-3024.2010.01258.x.
[96]  Linden, S.K.; Florin, T.H.; McGuckin, M.A. Mucin dynamics in intestinal bacterial infection. PLoS ONE 2008, 3, e3952, doi:10.1371/journal.pone.0003952.
[97]  Schmitz, J.M.; Durham, C.G.; Ho, S.B.; Lorenz, R.G. Gastric Mucus Alterations Associated With Murine Helicobacter Infection. J. Histochem. Cytochem. 2009, 57, 457–467, doi:10.1369/jhc.2009.952473.
[98]  Kang, H.M.; Kim, N.; Park, Y.S.; Hwang, J.H.; Kim, J.W.; Jeong, S.H.; Lee, D.H.; Lee, H.S.; Jung, H.C.; Song, I.S. Effects of Helicobacter pylori Infection on gastric mucin expression. J. Clin. Gastroenterol. 2008, 42, 29–35, doi:10.1097/MCG.0b013e3180653cb7.
[99]  White, S.H.; Wimley, W.C.; Selsted, M.E. Structure, function, and membrane integration of defensins. Curr. Opin. Struct. Biol. 1995, 5, 521–527, doi:10.1016/0959-440X(95)80038-7.
[100]  Strugnell, R.A.; Wijburg, O.L. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 2010, 8, 656–667, doi:10.1038/nrmicro2384.
[101]  Macpherson, A.J.; Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004, 303, 1662–1665, doi:10.1126/science.1091334.
[102]  Garside, P.; Grencis, R.K.; Mowat, A.M. T lymphocyte dependent enteropathy in murine Trichinella spiralis infection. Parasite Immunol. 1992, 14, 217–225, doi:10.1111/j.1365-3024.1992.tb00462.x.
[103]  McAuley, J.L.; Linden, S.K.; Png, C.W.; King, R.M.; Pennington, H.L.; Gendler, S.J.; Florin, T.H.; Hill, G.R.; Korolik, V.; McGuckin, M.A. The Muc1 Cell Surface Mucin is a Critical Element of the Mucosal Barrier to Infection. J. Clin. Invest. 2007, 117, 2313–2324, doi:10.1172/JCI26705.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133