Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 °C to 100 °C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO 2 and H 2S concentration varied at different sampling locations in the system, but the SO 2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants ( Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches.
References
[1]
Brock, T.D. Thermophilic Microorganisms and Life at High Temperatures; Springer-Verlag: New York, Heideldberg, Berlin, USA, 1978.
[2]
Madigan, M.T.; Martinko, J.M.; Dunlap, P.V.; Clark, D. Brock Biology of Microorganisms; Pearson/Benjamin Cummings: San Francisco, CA, USA, 2009.
[3]
Kristjansson, J.K.; Hreggvidsson, G.O. Ecology and habitats of extremophiles. World J. Microbiol. Biotechnol.?1995, 11, 17–25, doi:10.1007/BF00339134.
[4]
Baldantoni, D.; Ligrone, R.; Alfani, A. Macro- and trace-element concentrations in leaves and roots of Phragmitesaustralis in a volcanic lake in Southern Italy. J. Geochem. Explor.?2009, 101, 166–174, doi:10.1016/j.gexplo.2008.06.007.
[5]
Prieur, D.; Erauso, G.; Jeanthon, C. Hyperthermophiliclifa at deep-sea hydrothermal vents Planet. Space Sci.?1995, 43, 115–122, doi:10.1016/0032-0633(94)00143-F.
[6]
Kristjansson, J.K.; Stetter, K. Thermophilic bacteria. In Thermophilic Bacteria; CRC Press: Boca Raton, FL, USA, 1992; pp. 1–18.
[7]
Skirnisdottir, S.; Hreggvidsson, G.O.; Hjorleifsdottir, S.; Marteinsson, V.T.; Petursdottir, S.K.; Holst, O.; Kristjansson, J.K. Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl. Environ. Microbiol.?2000, 66, 2835–2841.
[8]
Ellis-Evans, C.; Walter, N. Coordination action for research activities on life in extreme environments–The CAREX project. J. Biol. Res. Thessalon.?2008, 9, 11–15.
[9]
Gomez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhofer, A.K.; Kviderova, J.; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; et al. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto. Int. J. Astrobiol.?2011, 10, 291–305, doi:10.1017/S147355041100005X.
[10]
Lopez-Archilla, A.I.; Marin, I.; Amils, R. Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microbial Ecol.?2001, 41, 20–35.
[11]
Kviderova, J. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient. Origins Life Evol. B?2012, 42, 223–234, doi:10.1007/s11084-012-9284-3.
[12]
Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assesment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Schulze, E.D., Caldwell, M.M., Eds.; Springer-Verlag: Berlin, Heildelberg, New York, NY, USA, 1995; pp. 47–70.
[13]
Monson, R.K.; Holland, E.A. Biospheric trace gas fluxes and their control over tropospheric chemistry. Annu. Rev. Ecol. Sys.?2001, 32, 547–276, doi:10.1146/annurev.ecolsys.32.081501.114136.
[14]
Medori, M.; Michelini, L.; Nogues, I.; Loreto, F.; Calfapietra, C. The Impact of Root Temperature on Photosynthesis and Isoprene Emission in Three Different Plant Species. Sci. World J.?2012, doi:10.1100/2012/525827.
[15]
Eilers, T.; Schwarz, G.; Brinkmann, H.; Witt, C.; Richter, T.; Nieder, J.; Koch, B.; Hille, R.; Hansch, R.; Mendel, R.R. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism. J. Biol. Chem.?2001, 276, 46989–46994.
[16]
Lee, H.-F.; Yang, T.F.; Lan, T.F.; Song, S.-R.; Tsao, S. Fumarolic Gas Composition of the Tatun Volcano Group, Northern Taiwan. TAO?2005, 16, 843–864.
[17]
Kristmannsdottir, H.; Sigurgeirsson, M.; Armannsson, H.; Hjartarson, H.; Olafsson, M. Sulfur gas emissions from geothermal power plants in Iceland. Geothermics?2000, 29, 525–538, doi:10.1016/S0375-6505(00)00020-1.
[18]
Rennenberg, H. The fate of excess sulphur in higher plants. Annu. Rev. Plant Physiol.?1984, 35, 121–153, doi:10.1146/annurev.pp.35.060184.001005.
[19]
Gich, F.; Janys, M.A.; Konig, M.; Overmann, J. Enrichment of previously uncultured bacteria from natural complex communities by adhesion to solid surfaces. Environ. Microbiol.?2012, 14, 2984–2997, doi:10.1111/j.1462-2920.2012.02868.x.
[20]
Krebs, J.; Vaishampayan, P.; Probst, A.J.; Tom, L.; Marteinsson, V.; Andersen, G.L.; Venkateswaran, K. Microbial community structures in Icelandic hot springs systems revealed by PhyloChip G3 analysis. Int. Soc. Microb. Ecol. J.?2013. in press.
[21]
Bohlar-Nordenkampf, H.R.; Long, S.P.; Baker, N.R.; ?quist, G.; Schreiber, U.; Lechner, E.G. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol.?1989, 4, 497–514.
Rohá?ek, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning and mutual relationship. Photosynthetica?2002, 40, 13–29, doi:10.1023/A:1020125719386.
[24]
Souza-Egipsy, V.; Altamirano, M.; Amils, R.; Aguilera, A. Photosynthetic performance of phototrophic biofilms in extreme acidic environments. Environ. Microbiol.?2011, 13, 2351–2358.
[25]
Edwards, G.E.; Walker, D.A. C3, C4 Mechanisms and Cellular and Environmental Regulation of Photosynthesis; Blackwell Sci. Pub.: Oxford, UK, 1983.
[26]
Borin, S.; Brusetti, L.; Mapelli, F.; D’Auria, G.; Brusa, T.; Marzorati, M.; Rizzi, A.; Yakimov, M.; Marty, D.; de Lange, G.J.; et al. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidicUrania deep hypersaline basin. Proc. Natl. Acad. Sci.USA?2009, 106, 9151–9156.
[27]
Daffonchio, D.; Cherif, A.; Brusetti, L.; Rizzi, A.; Mora, D.; Boudabous, A.; Borin, S. Nature of polymorphisms in 16S–23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. Appl. Environ. Microbiol.?2003, 69, 5128–5137.
[28]
Marasco, R.; Rolli, E.; Ettoumi, B.; Vigani, G.; Mapelli, F.; Borin, S.; Abou-Hadid, A.F.; El-Behairy, U.A.; Sorlini, C.; Cherif, A.; et al. A drought resistance—Promoting microbiome is selected by root system under desert farming. Plos One?2012, 7, e48479.
[29]
Venkateswaran, K.; Hattori, N.; La Duc, M.T.; Kern, R. ATP as a biomarker of viable microorganisms in clean-room facilities. J. Microbiol. Meth.?2003, 52, 367–377, doi:10.1016/S0167-7012(02)00192-6.
[30]
La Duc, M.T.; Osman, S.; Venkateswaran, K. Comparative analysis of methods for the purification of DNA from low biomass samples based on total yield and conserved microbial diveristiy. J. Rapid Meth. Aut. Microbiol.?2009, 17, 350–368.
[31]
Suzuki, M.T.; Taylor, L.T.; DeLong, E.F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol.?2000, 66, 4605–4614, doi:10.1128/AEM.66.11.4605-4614.2000.