全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

DOI: 10.1186/1750-0680-6-3

Full-Text   Cite this paper   Add to My Lib

Abstract:

Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas.Rates of recovery for burned forest areas to pre-1988 biomass levels were estimated from a unique combination of remote sensing and CASA model predictions. Ecosystem production and carbon fluxes in the Greater Yellowstone Ecosystem (GYE) result from complex interactions between climate, forest age structure, and disturbance-recovery patterns of the landscape.The Greater Yellowstone Ecosystem (GYE) provides a unique opportunity to study carbon cycles in the western evergreen forests and rangelands of North America. The GYE is the largest remaining continuous wildland area in the United States outside of Alaska. Yellowstone National Park (YNP) is considered to be one of the world's largest intact sub-alpine ecosystem in the northern temperate zone [1]. The absence of historical forest management for timber production in YNP and the extensive wildfires of 1988 combine to make the central GYE a landscape wi

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133