The origin of life on Earth is widely believed to have required the reactions of organic compounds and their self- and/or environmental organization. What those compounds were remains open to debate, as do the environment in and process or processes by which they became organized. Prebiotic chemistry is the systematic organized study of these phenomena. It is difficult to study poorly defined phenomena, and research has focused on producing compounds and structures familiar to contemporary biochemistry, which may or may not have been crucial for the origin of life. Given our ignorance, it may be instructive to explore the extreme regions of known and future investigations of prebiotic chemistry, where reactions fail, that will relate them to or exclude them from plausible environments where they could occur. Come critical parameters which most deserve investigation are discussed.
References
[1]
Cleaves, H.J., II. Prebiotic chemistry: What we know, what we don’t. Evol. Educ. Outreach?2012, 5, 342–360, doi:10.1007/s12052-012-0443-9.
[2]
W?chtersh?user, G. Before enzymes and templates: Theory of surface metabolism. Microbiol. Rev.?1988, 52, 452–484. 3070320
[3]
Hanczyc, M.M.; Fujikawa, S.M.; Szostak, J.W. Experimental models of primitive cellular compartments: Encapsulation, growth, and division. Science?2003, 302, 618–622, doi:10.1126/science.1089904.
[4]
Russell, M.J.; Daia, D.E.; Hall, A.J. The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. In Thermophiles: The Keys to the Molecular Evolution and the Origin of Life?; Wiegel, J., Adams, M.W.W., Eds.; Taylor and Francis: London, UK, 1998; pp. 77–126.
[5]
Fox, S.W.; Vegotsky, A.; Harada, K.; Hoagland, P.D. Spontaneous generation of anabolic pathways, protein, and nucleic acid. Ann. N. Y. Acad. Sci.?1957, 69, 328–337, doi:10.1111/j.1749-6632.1957.tb49669.x.
[6]
Cleaves, H.J., 2nd; Chalmers, J.H. Extremophiles may be irrelevant to the origin of life. Astrobiology?2004, 4, 1–9, doi:10.1089/153110704773600195.
[7]
Shapiro, R. Origins: A Skeptic’s Guide to the Creation of Life on Earth; Bantam Books: New York, NY, USA, 1987.
[8]
Schwartz, A.W.; van der Veen, M.; Bisseling, T.; Chittenden, G.J. Prebiotic nucleotide synthesis-demonstration of a geologically plausible pathway. Orig. Life?1975, 6, 163–168, doi:10.1007/BF01372401.
[9]
Pross, A. What is Life? How Chemistry Becomes Biology; Oxford University Press: Oxford, UK, 2012.
[10]
Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron?2007, 63, 12821–12844, doi:10.1016/j.tet.2007.10.012.
[11]
Shapiro, R. The improbability of prebiotic nucleic acid synthesis. Orig. Life Evol. B?1984, 14, 565–570, doi:10.1007/BF00933705.
[12]
McCollom, T.M. Miller-Urey and beyond: What have we learned about prebiotic organic synthesis reactions in the past 60 years? Ann. Rev. Earth Planet. Sci.?2003, 41, doi:10.1146/annurev-earth-040610-133457.
[13]
Kirschvink, J.L.; Weiss, B.P. Mars, panspermia, and the origin of life: Where did it all begin. Palaeontol. Electron.?2002, 4, 8–15.
[14]
Hoover, R.B. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere. In Biosphere Origin and Evolution; Springer: New York, NY, USA, 2008; pp. 55–68.
[15]
Russell, M.J.; Hall, A.J.; Boyce, A.J.; Fallick, A.E. 100th anniversary special paper: On hydrothermal convection systems and the emergence of life. Econ. Geol.?2005, 100, 419–438.
[16]
W?chtersh?user, G. Groundworks for an evolutionary biochemistry—The iron sulfur world. Prog. Biophys. Mol. Biol.?1992, 58, 85–201, doi:10.1016/0079-6107(92)90022-X.
[17]
Corliss, J.; Baross, J.; Hoffman, S. An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol. Acta?1981, 4, 59–69.
[18]
Fox, S.W. Thermal synthesis of amino acids and the origin of life. Geochim. Cosmochim Acta?1995, 59, 1213–1214, doi:10.1016/0016-7037(95)00037-Z.
[19]
Nelson, K.E.; Robertson, M.P.; Levy, M.; Miller, S.L. Concentration by evaporation and the prebiotic synthesis of cytosine. Orig. Life Evol. B?2001, 31, 221–229, doi:10.1023/A:1010652418557.
[20]
Gesteland, R.F.; Cech, T.; Atkins, J.F. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World, 3rd ed. ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA, 2006; p. 768.
[21]
Joyce, G.F.; Schwartz, A.W.; Miller, S.L.; Orgel, L.E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. USA?1987, 84, 4398–4402, doi:10.1073/pnas.84.13.4398.
[22]
Luisi, P.L.; Varela, F.J. Self-replicating micelles—A chemical version of a minimal autopoietic system. Orig. Life Evol B?1989, 19, 633–643, doi:10.1007/BF01808123.
[23]
Luisi, P.L.; Walde, P.; Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface?1999, 4, 33–39, doi:10.1016/S1359-0294(99)00012-6.
[24]
Kauffman, S. Question 1: Origin of life and the living state. Orig. Life Evol. B?2007, 37, 315–322, doi:10.1007/s11084-007-9093-2.
[25]
Cody, G.D.; Boctor, N.Z.; Hazen, R.M.; Brandes, J.A.; Morowitz, H.J.; Yoder, H.S., Jr. Geochemical roots of autotrophic carbon fixation: Hydrothermal experiments in the system citric acid, H2O-(±FeS)-(±NiS). Geochim. Cosmochim. Acta?2001, 65, 3557–3576, doi:10.1016/S0016-7037(01)00674-3.
[26]
Chen, I.A.; Roberts, R.W.; Szostak, J.W. The emergence of competition between model protocells. Science?2004, 305, 1474–1476, doi:10.1126/science.1100757.
Ehrenfreund, P.; Rasmussen, S.; Cleaves, J.; Chen, L. Experimentally tracing the key steps in the origin of life: The aromatic world. Astrobiology?2006, 6, 490–520, doi:10.1089/ast.2006.6.490.
[29]
Segre, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA?2000, 97, 4112–4117, doi:10.1073/pnas.97.8.4112.
[30]
Fox, S.W.; Jungck, J.R.; Nakashima, T. From proteinoid microsphere to contemporary cell: Formation of internucleotide and peptide bonds by proteinoid particles. Orig. Life?1974, 5, 227–237, doi:10.1007/BF00927027.
Mojzsis, S.J.; Harrison, T.M.; Pidgeon, R.T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 myr ago. Nature?2001, 409, 178–181, doi:10.1038/35051557.
[35]
Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature?1992, 355, 125–132, doi:10.1038/355125a0.
[36]
Miller, S.L.; Schlesinger, G. Carbon and energy yields in prebiotic syntheses using atmospheres containing CH4, CO and CO2. Orig. Life?1984, 14, 83–90, doi:10.1007/BF00933643.
[37]
Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA?2010, 107, 2763–2768, doi:10.1073/pnas.0912157107.
[38]
Schwartz, A.W. Intractable mixtures and the origin of life. Chem. Biodivers.?2007, 4, 656–664, doi:10.1002/cbdv.200790056.
[39]
Arrhenius, G.; Bada, J.L.; Joyce, G.F.; Lazcano, A.; Miller, S.; Orgel, L.E. Origin and ancestor: Separate environments. Science?1999, 283, 792–792. 10049122
[40]
Line, M.A. The enigma of the origin of life and its timing. Microbiology?2002, 148, 21–27. 11782495
[41]
Caetano-Anolles, G.; Sun, F.-J.; Wang, M.; Yafremava, L.S.; Harish, A.; Kim, H.S.; Knudsen, V.; Caetano-Anolles, D.; Mittenthal, J.E. Origins and evolution of modern biochemistry: Insights from genomes and molecular structure. Front. Biosci.?2008, 13, 5212–5240. 18508583
[42]
Vermeij, G.J. Historical contingency and the purported uniqueness of evolutionary innovations. Proc. Natl. Acad. Sci. USA?2006, 103, 1804–1809, doi:10.1073/pnas.0508724103.
[43]
Freeland, S.J.; Hurst, L.D. The genetic code is one in a million. J. Mol. Evol.?1998, 47, 238–248, doi:10.1007/PL00006381.
[44]
Feng, D.-F.; Cho, G.; Doolittle, R.F. Determining divergence times with a protein clock: Update and reevaluation. Proc. Nat. Acad. Sci. USA?1997, 94, 13028–13033, doi:10.1073/pnas.94.24.13028.
[45]
Sheridan, P.P.; Freeman, K.H.; Brenchley, J.E. Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol. J.?2003, 20, 1–14, doi:10.1080/01490450303891.
[46]
Sleep, N.H. The Hadean-Archaean environment. Cold Spring Harb. Perspect. Biol.?2010, 2, doi:10.1101/cshperspect.a002527.
Schidlowski, M. A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature?1988, 333, 313–318, doi:10.1038/333313a0.
[49]
Schopf, J.W. Microfossils of the early archean apex chert: New evidence of the antiquity of life. Science?1993, 260, 640–646, doi:10.1126/science.260.5108.640. 11539831
[50]
Wacey, D.; Kilburn, M.R.; Saunders, M.; Cliff, J.; Brasier, M.D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of western Australia. Nat. Geosci.?2011, 4, 698–702, doi:10.1038/ngeo1238.
[51]
McCollom, T.M. The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta?2013, 104, 330–357, doi:10.1016/j.gca.2012.11.008.
[52]
Marshall-Bowman, K.; Ohara, S.; Sverjensky, D.A.; Hazen, R.M.; Cleaves, H.J. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry. Geochim. Cosmochim. Acta?2010, 74, 5852–5861, doi:10.1016/j.gca.2010.07.009.
[53]
Vallentyne, J.R. Biogeochemistry of organic matter—II thermal reaction kinetics and transformation products of amino compounds. Geochim. Cosmochim. Acta?1964, 28, 157–188, doi:10.1016/0016-7037(64)90147-4.
[54]
Levy, M.; Miller, S.L. The stability of the RNA bases: Implications for the origin of life. Proc. Natl. Acad. Sci. USA?1998, 95, 7933–7938, doi:10.1073/pnas.95.14.7933.
[55]
Larralde, R.; Robertson, M.P.; Miller, S.L. Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc. Natl. Acad. Sci. USA?1995, 92, 8158–8160, doi:10.1073/pnas.92.18.8158.
Phylogenetic Tree. Available online: http://www.gla.ac.uk/projects/originoflife/html/2001/figures/fig2.htm/ (accessed on 14 March 2013).
[59]
Tera, F.; Papanastassiou, D.; Wasserburg, G. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett.?1974, 22, 1–21, doi:10.1016/0012-821X(74)90059-4.
[60]
Maher, K.A.; Stevenson, D.J. Impact frustration of the origin of life. Nature?1988, 331, 612–614, doi:10.1038/331612a0.
[61]
Spudis, P.D.; Wilhelms, D.E.; Robinson, M.S. The sculptured hills of the Taurus highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res. Planets?2011, 116, E00H03, doi:10.1029/2011JE003903.
[62]
Cnossen, I.; Sanz-Forcada, J.; Favata, F.; Witasse, O.; Zegers, T.; Arnold, N.F. Habitat of early life: Solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J. Geophys. Res. Planets?2007, 112, doi:10.1029/2006JE002784.
[63]
Costanzo, G.; Saladino, R.; Crestini, C.; Ciciriello, F.; di Mauro, E. Formamide as the main building block in the origin of nucleic acids. BMC Evol. Biol.?2007, 7, S1. 17767725
[64]
Lazcano, A. The origins of life: Have too many cooks spoiled the prebiotic soup? Nat. Hist.?2006, 115, 36–41.
[65]
Hoenigsberg, H.F. From geochemistry and biochemistry to prebiotic evolution.We necessarily enter into Gánti’s fluid automata. Genet. Mol. Res.?2007, 6, 358–373. 17624859
[66]
Dreyfus, M.; Dodin, G.; Bensaude, O.; Dubois, J. Tautomerism of purines. I. N(7)H ? N(9)H equilibrium in adenine. J. Am. Chem. Soc.?1975, 97, 2369–2376, doi:10.1021/ja00842a011. 237051
[67]
Monnard, P.-A.; Deamer, D.W. Preparation of vesicles from nonphospholipid amphiphiles. Method. Enzymol.?2003, 372, 133–151, doi:10.1016/S0076-6879(03)72008-4.
[68]
Sanchez, R.A.; Ferris, J.P.; Orgel, L.E. Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J. Mol. Biol.?1967, 30, 223–253. 4297187
[69]
Shigemasa, Y.; Fujitani, T.; Sakazawa, C.; Matsuura, T. Formose reactions. III. Evaluation of various factors affecting the formose reaction. Bull. Chem. Soc. Jpn.?1977, 50, 1527–1531, doi:10.1246/bcsj.50.1527.
[70]
Miyakawa, S.; Cleaves, H.J.; Miller, S.L. The cold origin of life: A Implications based on the hydrolytic stabilities of hydrogen cyanide and formamide. Orig. Life Evol. B?2002, 32, 195–208, doi:10.1023/A:1016514305984.
[71]
Nelson, K.E.; Levy, M.; Miller, S.L. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. USA?2000, 97, 3868–3871, doi:10.1073/pnas.97.8.3868.
[72]
Cleaves, H.J.; Aubrey, A.D.; Bada, J.L. An evaluation of the critical parameters for abiotic peptide synthesis in submarine hydrothermal systems. Orig. Life Evol. B?2009, 39, 109–126, doi:10.1007/s11084-008-9154-1.
[73]
Saladino, R.; Crestini, C.; Pino, S.; Costanzo, G.; di Mauro, E. Formamide and the origin of life. Phys. Life Rev.?2012, 9, 84–104, doi:10.1016/j.plrev.2011.12.002.
[74]
Wochner, A.; Attwater, J.; Coulson, A.; Holliger, P. Ribozyme-catalyzed transcription of an active ribozyme. Science?2011, 332, 209–212, doi:10.1126/science.1200752.
[75]
Lazcano, A.; Miller, S.L. How long did it take for life to begin and evolve to cyanobacteria? J. Mol. Evol.?1994, 39, 546–554, doi:10.1007/BF00160399.
[76]
Orgel, L.E. The origin of life—How long did it take? Orig. Life Evol. B?1998, 28, 91–96, doi:10.1023/A:1006561308498.
[77]
Ohara, S.; Kakegawa, T.; Nakazawa, H. Pressure effects on the abiotic polymerization of glycine. Orig. Life Evol. B?2007, 37, 215–223, doi:10.1007/s11084-007-9067-4.
[78]
Cleaves, H.J., 2nd; Nelson, K.E.; Miller, S.L. The prebiotic synthesis of pyrimidines in frozen solution. Naturwissenschaften?2006, 93, 228–231, doi:10.1007/s00114-005-0073-y.
[79]
Miller, S.L.; Orgel, L.E. The Origins of Life on the Earth; Prentice-Hall: Englewood Cliffs, NJ, USA, 1974; p. 229.
[80]
Cleaves, H.J. The prebiotic geochemistry of formaldehyde. Precambrian Res.?2008, 164, 111–118, doi:10.1016/j.precamres.2008.04.002.
[81]
Rode, B.M.; Son, H.L.; Suwannachot, Y. The combination of salt induced peptide formation reaction and clay catalysis: A way to higher peptides under primitive Earth conditions. Orig. Life Evol. B?1999, 29, 273–286, doi:10.1023/A:1006540101290.
[82]
Prieur, B.E. étude de l’activité prébiotique potentielle de l’acide borique. C. R. Acad. Sci. Ser.?2001, 4, 667–670.
Lambert, J.B.; Gurusamy-Thangavelu, S.A.; Ma, K. The silicate-mediated formose reaction: Bottom-up synthesis of sugar silicates. Science?2010, 327, 984–986, doi:10.1126/science.1182669.
[85]
Schwartz, A.W.; Degraaf, R.M. The prebiotic synthesis of carbohydrates—A reassessment. J. Mol. Evol.?1993, 36, 101–106, doi:10.1007/BF00166245.
[86]
Decker, P.; Schweer, H.; Pohlamnn, R. Bioids: X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—Mass spectrometry of n-butoxime trifluoroacetates on OV-225. J. Chrom. A?1982, 244, 281–291, doi:10.1016/S0021-9673(00)85692-7.
[87]
Ritson, D.; Sutherland, J.D. Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat. Chem.?2012, 4, 895–899, doi:10.1038/nchem.1467.
[88]
Glavin, D.P.; Callahan, M.P.; Dworkin, J.P.; Elsila, J.E. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci.?2010, 45, 1948–1972, doi:10.1111/j.1945-5100.2010.01132.x.
[89]
Miller, S.L. The mechanism of synthesis of amino acids by electric discharges. Biochim. Biophys. Acta?1957, 23, 480–489, doi:10.1016/0006-3002(57)90366-9.
[90]
Ferris, J.P.; Joshi, P.C.; Edelson, E.H.; Lawless, J.G. Hcn: A plausible source of purines, pyrimidines and amino acids on the primitive Earth. J. Mol. Evol.?1978, 11, 293–311, doi:10.1007/BF01733839.
[91]
Yusenko, K.; Fox, S.; Guni, P.; Strasdeit, H. Model studies on the formation and reactions of solid glycine complexes at the coasts of a primordial salty ocean. Z. Anorg. Allg. Chem.?2008, 634, 2347–2354, doi:10.1002/zaac.200800285.
[92]
Cleaves, H.J.; Miller, S.L. Oceanic protection of prebiotic organic compounds from UV radiation. Proc. Nat. Acad. Sci. USA?1998, 95, 7260–7263, doi:10.1073/pnas.95.13.7260.
[93]
Powner, M.W.; Anastasi, C.; Crowe, M.A.; Parkes, A.L.; Raftery, J.; Sutherland, J.D. On the prebiotic synthesis of ribonucleotides: Photoanomerisation of cytosine nucleosides and nucleotides revisited. Chembiochem?2007, 8, 1170–1179, doi:10.1002/cbic.200700098.
[94]
Sanchez, R.A.; Orgel, L.E. Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. J. Mol. Biol.?1970, 47, 531–543, doi:10.1016/0022-2836(70)90320-7.
[95]
Zhang, X.V.; Martin, S.T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc.?2006, 128, 16032–16033, doi:10.1021/ja066103k.
[96]
Cleaves, H.J.; Michalkova Scott, A.; Hill, F.C.; Leszczynski, J.; Sahai, N.; Hazen, R. Mineral-organic interfacial processes: Potential roles in the origins of life. Chem. Soc. Rev.?2012, 41, 5502–5525, doi:10.1039/c2cs35112a.
[97]
Imai, E.; Honda, H.; Hatori, K.; Brack, A.; Matsuno, K. Elongation of oligopeptides in a simulated submarine hydrothermal system. Science?1999, 283, 831–833, doi:10.1126/science.283.5403.831.
[98]
Lahav, N.; White, D.; Chang, S. Peptide formation in the prebiotic era: Thermal condensation of glycine in fluctuating clay environments. Science?1978, 201, 67–69, doi:10.1126/science.663639. 663639
[99]
Dragani?, I.G.; Dragani?, Z.D.; Adloff, J.P. Radiation and Radioactivity on Earth and Beyond; CRC Press: London, UK, 1990.