全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Cell Division  2012 

Identification of new cell size control genes in S. cerevisiae

DOI: 10.1186/1747-1028-7-24

Keywords: Yeast, Cell cycle, Cell size, Growth, Cyclins

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell size homeostasis is physiologically important to nearly all organisms. This is evident from the uniformity and conservation of size within a cell lineage amongst the individuals of a species from bacteria to man [1]. Moreover, studies in flies, mice and humans indicate the presence of an organ size checkpoint during developmental stages [2]. To ensure a population of cells that maintain a constant average cell size, it is essential that cells coordinate the processes of growth, which increases cell size, and cell division, which reduces cell size [3]. Irregularities in these processes affect fitness and function [4]. In the budding yeast S. cerevisiae, coordination of growth and division occurs at START, the point of commitment to the cell cycle [5,6] which is equivalent to the Restriction point in mammalian cells [7]. At START, a cell transits, essentially irreversibly, from G1- to S-phase. Early genetic analyses of START revealed that blocking cell growth prevents cell cycle progression [5]. However, the converse is not true [5]. For example, the discovery of cell division cycle (CDC) genes, a class of essential genes involved in cell cycle control, established that cell growth is a continuous process that proceeds unabated even when cell cycle progression is halted [8]. The end result is the production of abnormally large cells [5]. Thus, the mechanisms that regulate the cell cycle can have a profound impact on cell growth and vice versa.Physiological studies in yeast and mammalian cells suggest that cells undergo exponential growth throughout the cell cycle [4,9-12]. Since exponential growth is inherently tied to cell size (e.g. larger cells grow faster than smaller cells), some type of “size sensing” mechanism is required for cell size homeostasis [4,13,14]. While the mechanism remains somewhat obscure, evidence suggests that in yeast commitment to division is linked to cell size [4,13,14]. In yeast, cells must attain a certain “critical cell size” before

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413