全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Tellus B  2013 

Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion

DOI: 10.3402/tellusb.v65i0.19054

Keywords: aerosol indirect effects , cloud droplet spectral dispersion , autoconversion parameterization , deep convective systems , two-moment bulk microphysics scheme

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aerosol effects on clouds and precipitation in deep convective cloud systems are investigated using the Weather Research and Forecast (WRF) model with the Morrison two-moment bulk microphysics scheme. Considering positive or negative relationships between the cloud droplet number concentration (Nc) and spectral dispersion (ε), a suite of sensitivity experiments are performed using an initial sounding data of the deep convective cloud system on 31 March 2005 in Beijing under either a maritime (‘clean’) or continental (‘polluted’) background. Numerical experiments in this study indicate that the sign of the surface precipitation response induced by aerosols is dependent on the ε Nc relationships, which can influence the autoconversion processes from cloud droplets to rain drops. When the spectral dispersion ε is an increasing function of Nc, the domain-average cumulative precipitation increases with aerosol concentrations from maritime to continental background. That may be because the existence of large-sized rain drops can increase precipitation at high aerosol concentration. However, the surface precipitation is reduced with increasing concentrations of aerosol particles when ε is a decreasing function of Nc. For the ε Nc negative relationships, smaller spectral dispersion suppresses the autoconversion processes, reduces the rain water content and eventually decreases the surface precipitation under polluted conditions. Although differences in the surface precipitation between polluted and clean backgrounds are small for all the ε Nc relationships, additional simulations show that our findings are robust to small perturbations in the initial thermal conditions.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413