全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Tellus A  2012 

Snow and ice on Bear Lake (Alaska) – sensitivity experiments with two lake ice models

DOI: 10.3402/tellusa.v64i0.17339

Keywords: snow on lake ice , thermodynamic ice model , heat conductivity of snow , albedo , snow to ice transformation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Snow and ice thermodynamics of Bear Lake (Alaska) are investigated with a simple freshwater lake model (FLake) and a more complex snow and ice thermodynamic model (HIGHTSI). A number of sensitivity experiments have been carried out to investigate the influence of snow and ice parameters and of different complexity on the results. Simulation results are compared with observations from the Alaska Lake Ice and Snow Observatory Network. Adaptations of snow thermal and optical properties in FLake can largely improve accuracy of the results. Snow-to-ice transformation is important for HIGHTSI to calculate the total ice mass balance. The seasonal maximum ice depth is simulated in FLake with a bias of 0.04 m and in HIGHTSI with no bias. Correlation coefficients between ice depth measurements and simulations are high (0.74 for FLake and 0.9 for HIGHTSI). The snow depth simulation can be improved by taking into account a variable snow density. Correlation coefficients for surface temperature are 0.72 for FLake and 0.81 for HIGHTSI. Overall, HIGHTSI gives slightly more accurate surface temperature than FLake probably due to the consideration of multiple snow and ice layers and the expensive iteration calculation procedure.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413