全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Math Anxiety Questionnaire: Similar Latent Structure in Brazilian and German School Children

DOI: 10.1155/2012/610192

Full-Text   Cite this paper   Add to My Lib

Abstract:

Math anxiety is a relatively frequent phenomenon often related to low mathematics achievement and dyscalculia. In the present study, the German and the Brazilian versions of the Mathematics Anxiety Questionnaire (MAQ) were examined. The two-dimensional structure originally reported for the German MAQ, that includes both affective and cognitive components of math anxiety was reproduced in the Brazilian version. Moreover, mathematics anxiety also was found to increase with age in both populations and was particularly associated with basic numeric competencies and more complex arithmetics. The present results suggest that mathematics anxiety as measured by the MAQ presents the same internal structure in culturally very different populations. 1. Introduction Every student knows how unpleasant life can be when the mathematics test is approaching. Although there is no gold standard to measure the levels of math anxiety (MA) that should be considered maladaptive, depending on their intensity and duration, negative physiological reactions, effects, and thoughts regarding mathematics can be considered a form of performance-related phobia [1]. Correlations between MA and math achievement have been reported [2, 3] as well as bidirectional associations between MA and math performance on several time scales going from online or short-term to long-term effects. On the long term, low math achievement is an antecedent of MA [4, 5] but MA also interferes with math performance. MA leads to hastened performance on math tasks and avoidance of math activities and courses, resulting in lower math skills and choice of careers with less demanding curricular requirements regarding mathematics [6, 7]. Besides, successful treatment of MA leads to significant improvements in math performance [2]. Short-term, online effects of MA on math performance have also been described. Negative emotional and math-related primes have been shown to speed up math performance in children with math learning disability [8]. Other studies indicate that MA negatively interferes with math performance. Initial research showed that online effects of MA on math performance were more pronounced for tasks demanding higher levels of working memory resources, such as those involving transfer between columns [9]. Newer findings demonstrate, however, that MA also interferes with performance in more basic number processing tasks, such as magnitude comparison [10] and counting, but not subitizing [11]. In line with these last results, children with high MA display comparatively lower levels of frontoparietal and

References

[1]  M. H. Ashcraft, J. A. Krause, and D. R. Hopko, “Is math anxiety a mathematical learning disability?” in Why Is Math so Hard for Some Children? The Nature and Origins of Mathematical Learning Difficulties and Disabilities, D. B. Berch and M. M. M. Mazzocco, Eds., pp. 329–348, Brookes, Baltimore, Md, USA, 2007.
[2]  R. Hembree, “The nature, effects, and relief of mathematics anxiety,” Journal for Research in Mathematics Education, vol. 21, no. 1, pp. 33–46, 1990.
[3]  X. Ma, “A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics,” Journal for Research in Mathematics Education, vol. 30, no. 5, pp. 520–540, 1999.
[4]  H. Krinzinger, L. Kaufmann, and K. Willmes, “Math anxiety and math ability in early primary school years,” Journal of Psychoeducational Assessment, vol. 27, no. 3, pp. 206–225, 2009.
[5]  X. Ma and J. Xu, “The causal ordering of mathematics anxiety and mathematics achievement: a longitudinal panel analysis,” Journal of Adolescence, vol. 27, no. 2, pp. 165–179, 2004.
[6]  M. H. Ashcraft and M. W. Faust, “Mathematics anxiety and mental arithmetic performance: an exploratory investigation,” Cognition and Emotion, vol. 8, no. 2, pp. 97–125, 1994.
[7]  J. A. LeFevre, A. G. Kulak, and S. L. Heymans, “Factors influencing the selection of university majors varying in mathematical content,” Canadian Journal of Behavioural Science, vol. 24, no. 3, pp. 276–289, 1992.
[8]  O. Rubinsten and R. Tannock, “Mathematics anxiety in children with developmental dyscalculia,” Behavioral and Brain Functions, vol. 6, article no. 46, no. 1, p. 46, 2010.
[9]  M. H. Ashcraft and E. P. Kirk, “The relationships among working memory, math anxiety, and performance,” Journal of Experimental Psychology, vol. 130, no. 2, pp. 224–237, 2001.
[10]  E. A. Maloney, D. Ansari, and J. A. Fugelsang, “The effect of mathematics anxiety on the processing of numerical magnitude,” The Quarterly Journal of Experimental Psychology, vol. 64, no. 1, pp. 10–16, 2011.
[11]  E. A. Maloney, E. F. Risko, D. Ansari, and J. Fugelsang, “Mathematics anxiety affects counting but not subitizing during visual enumeration,” Cognition, vol. 114, no. 2, pp. 293–297, 2010.
[12]  C. B. Young, S. S. Wu, and V. Menon, “The neurodevelopmental basis of math anxiety,” Psychological Science. In press.
[13]  A. Mattarella-Micke, J. Mateo, M. N. Kozak, K. Foster, and S. L. Beilock, “Choke or thrive? The relation between salivary cortisol and math performance depends on individual differences in working memory and math-anxiety,” Emotion, vol. 11, no. 4, pp. 1000–1005, 2011.
[14]  D. R. Hopko, D. W. McNeil, C. W. Lejuez, M. H. Ashcraft, G. H. Eifert, and J. Riel, “The effects of anxious responding on mental arithmetic and lexical decision task performance,” Journal of Anxiety Disorders, vol. 17, no. 6, pp. 647–665, 2003.
[15]  H. Krinzinger, L. Kaufmann, A. Dowker et al., “German version of the math anxiety questionnaire (FRA) for 6- to 9-year-old children,” Zeitschrift fur Kinder- und Jugendpsychiatrie und Psychotherapie, vol. 35, no. 5, pp. 341–351, 2007.
[16]  J. Lee, “Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries,” Learning and Individual Differences, vol. 19, no. 3, pp. 355–365, 2009.
[17]  H. Z. Ho, D. Senturk, A. G. Lam et al., “The affective and cognitive dimensions of math anxiety: a cross-national study,” Journal for Research in Mathematics Education, vol. 31, no. 3, pp. 362–379, 2000.
[18]  A. Wigfield and J. L. Meece, “Math anxiety in elementary and secondary school students,” Journal of Educational Psychology, vol. 80, no. 2, pp. 210–216, 1988.
[19]  L. Angelini, I. C. B. Alves, E. M. Custódio, W. F. Duarte, and J. L. M. Duarte, Matrizes Progressivas Coloridas de Raven, Centro Editor de Testes e Pesquisas em Psicologia, S?o Paulo, Brazil, 1999.
[20]  L. M. Stein, Teste de Desempenho Escolar: Manual para Aplica??o e Interpreta??o, Casa do Psicólogo, S?o Paulo, Brazil, 1994.
[21]  L. Kaufmann, H.-C. Nuerk, M. Graf, M. Delazer, and K. Willmes, TEDI-MATH: Test Zur Erfassung Numerisch-Rechnerischer Fertigkeiten Vom Kindergarten Bis Zur 3, Hans-Huber, Zürich, Switzerland, 2009.
[22]  V. L. M. Figueiredo, WISCIII: Escala de Inteligência Wechsler para Crian?as. Manual Adapta??o e Padroniza??o Brasileira, Casa do Psicólogo, S?o Paulo, Brazil, 2002.
[23]  R. P. C. Kessels, M. J. E. Van Zandvoort, A. Postma, L. J. Kappelle, and E. H. F. De Haan, “The Corsi Block-Tapping Task: Standardization and normative data,” Applied Neuropsychology, vol. 7, no. 4, pp. 252–258, 2000.
[24]  C. Van Nieuwenhoven, J. Grégoire, and M. P. No?l, Test Diagnostique des Compétences de Base en Mathématiques (Tedi-Math), Edition du Centre de Psychologie Appliquée, Paris, France, 2001.
[25]  G. Thomas and A. Dowker, “Mathematics anxiety and related factors in young children,” in Proceedings of the Developmental Section Conference, British Psychological Society, Bristol, UK, 2000.
[26]  V. G. Haase, A. Júlio-Costa, P. Pinheiro-Chagas, L. F. S. Oliveira, L. Rettore-Micheli, and G. Wood, “Math self-assessment, but not negative feelings, predicts mathematics performance of elementary school children,” Child Development Research, vol. 2012, Article ID 982672, 10 pages, 2012.
[27]  R. J. Mokken, A Theory and Procedure of Scale Analysis, De Gruyter, Berlin, Germany, 1971.
[28]  R. J. Mokken and C. Lewis, “A nonparametric approach to the analysis of dichotomous item responses,” Applied Psychological Measurement, vol. 6, no. 4, pp. 417–430, 1982.
[29]  K. Sijtsma and I. W. Molenaar, Introduction to Nonparametric Item Response Theory, Sage, Thousand Oaks, Calif, USA, 2002.
[30]  K. Willmes, “An approach to analyzing a single subject's scores obtained in a standardized test with application to the Aachen Aphasia Test (AAT),” Journal of Clinical and Experimental Neuropsychology, vol. 7, no. 4, pp. 331–352, 1985.
[31]  S. Chinn, “Mathematics anxiety in secondary students in England,” Dyslexia, vol. 15, no. 1, pp. 61–68, 2009.
[32]  F. de O. Ferreira, G. Wood, P. Pinheiro-Chagas, et al., “Explaining school mathematics performance from symbolic and nonsymbolic magnitude processing: similarities and differences between typical and low-achieving children,” Psychology & Neuroscience, vol. 51, pp. 37–46, 2012.
[33]  B. Pletzer, G. Wood, K. Moeller, H. C. Nuerk, and H. H. Kerschbaum, “Predictors of performance in a real-life statistics examination depend on the individual cortisol profile,” Biological Psychology, vol. 85, no. 3, pp. 410–416, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413