|
Integrins are required for cardioblast polarisation in DrosophilaKeywords: Tubulogenesis, Lumen, Apical signaling, Integrin, Slit, Extracellular matrix, Cell polarity, Cell migration, Leading edge Abstract: As with vertebrates, the Drosophila heart arises from lateral mesoderm that migrates medially to meet their contralateral partners, to then assemble a midline vessel. During migration, Integrins are among the first proteins restricted to the presumptive luminal domain of cardioblasts. Integrins are required for normal levels of leading edge membrane motility. Apical accumulation of Integrins is enhanced by Robo, and reciprocally, apicalisation of luminal factors like Slit and Robo requires Integrin function. Integrins may provide a template for the formation of a lumen by stabilising lumen factors like Robo. Subsequent to migration, Integrin is required for normal cardioblast alignment and lumen formation. This phenotype is most readily modified by other mutations that affect adhesion, such as Talin and extracellular matrix ligands.Our findings reveal an instructive role for Integrins in communicating polarising information to cells during migration, and during transition to an epithelial tube structure.Vascular endothelia are characterised by a polarised cell architecture, wherein Cadherin based cell junctions establish the integrity of the vessel walls, while the lumen of the vessel is defined by Integrins and an extracellular matrix (ECM) [1,2]. When these vessels first form, grow or are remodeled, the progenitor cells must be less polarised, as they will change neighbours, migrate through other tissues, and respond to local growth cues. During vessel formation, progenitors may have a more mesenchymal organisation, while the differentiated vessel must have stable epithelial polarisation of membrane domains. Vasculogenesis, therefore, can be interpreted in the framework of mesenchymal to epithelial transition [3].Integrins are transmembrane receptors comprised of pairs of α and β subunits, which link the ECM to the cell cytoskeleton, and mediate cell locomotion, adhesion and signals that affect differentiation and survival [4,5]. There are at least 7 different Int
|