全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Probing Phonons in Nonpolar Semiconducting Nanowires with Raman Spectroscopy

DOI: 10.1155/2012/264198

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present recent developments in Raman probe of confined optical and acoustic phonons in nonpolar semiconducting nanowires, with emphasis on Si and Ge. First, a review of the theoretical spatial correlation phenomenological model widely used to explain the downshift and asymmetric broadening to lower energies observed in the Raman profile is given. Second, we discuss the influence of local inhomogeneous laser heating and its interplay with phonon confinement on Si and Ge Raman line shape. Finally, acoustic phonon confinement, its effect on thermal conductivity, and factors that lead to phonon damping are discussed in light of their broad implications on nanodevice fabrication. 1. Introduction Since the discovery of the Raman scattering process by Raman and Krishnan in 1928 [1] and the invention of the laser in 1960 by Maiman [2–4], Raman spectroscopy has morphed from standard macroprobe of bulk materials to single molecular detection [5–11]. The innovations in Raman spectroscopy have made it one of the most widely used techniques to probe nanostructures, beside transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) as shown in Figure 1. The data in Figure 1 was collected from the ISI web of science site for the period of January 1996 to July 2010 on nanoscale characterization tools used in probing nanostructures [12]. Even though probing individual nanostructures by Raman spectroscopy at nanoscale is limited by its low spatial resolution (diffraction limit of the objectives), recent developments in nano-Raman spectroscopy, including scanning near-field optical microscopy (NSOM), tip enhanced Raman spectroscopy (TERS), and surface enhanced Raman spectroscopy (SERS), have made single-molecule detection possible [5–11, 13–17], especially using SERS and TERS. While NSOM is based on the principle of optical tunneling of evanescent waves, TERS and SERS are based on excitation of surface plasmons on the surface of nanometals. The process arises when free electrons on the surface of a metal oscillate collectively in resonance with the oscillating electric field of the incident light wave. The interaction between the surface charge and the electromagnetic field helps concentrate the light on the surface of the metal, leading to electric field enhancement. Irrespective of such great innovative techniques in nano-Raman spectroscopy, nearly 84% (see Figure 1) of Raman characterization use conventional Raman spectroscopy to probe nanoscale samples [12]; that is, probing ensembles of

References

[1]  C. V. Raman and K. S. Krishnan, “A new type of secondary radiation,” Nature, vol. 121, no. 3048, pp. 501–502, 1928.
[2]  T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, vol. 187, no. 4736, pp. 493–494, 1960.
[3]  T. H. Maiman, “Optical and microwave-optical experiments in Ruby,” Physical Review Letters, vol. 4, no. 11, pp. 564–566, 1960.
[4]  T. H. Maiman, “Stimulated optical emission in Ruby,” Journal of the Optical Society of America, vol. 50, no. 11, p. 1134, 1960.
[5]  T. N. Dung, D. J. Kim, and K. S. Kim, “Controlled synthesis and biomolecular probe application of gold nanoparticles,” Micron, vol. 42, no. 3, pp. 207–227, 2011.
[6]  J. Xu, L. Zhang, H. Gong, J. Homola, and Q. Yu, “Tailoring plasmonic nanostructures for optimal SERS sensing of small molecules and large microorganisms,” Small, vol. 7, no. 3, pp. 371–376, 2011.
[7]  E. Spain, R. Kojima, R. B. Kaner et al., “High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2613–2618, 2011.
[8]  W. Xie, P. Qiu, and C. Mao, “Bio-imaging, detection and analysis by using nanostructures as SERS substrates,” Journal of Materials Chemistry, vol. 21, no. 14, pp. 5190–5202, 2011.
[9]  I. Lee, X. Luo, X. T. Cui, and M. Yun, “Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin,” Biosensors and Bioelectronics, vol. 26, no. 7, pp. 3297–3302, 2011.
[10]  S. Habouti, M. Mátéfi-Tempfli, C. -H. Solterbeck, M. Es-Souni, S. Mátéfi-Tempfli, and M. Es-Souni, “Self-standing corrugated Ag and Au-nanorods for plasmonic applications,” Journal of Materials Chemistry, vol. 21, no. 17, pp. 6269–6273, 2011.
[11]  B. R. Wood, E. Bailo, M. A. Khiavi et al., “Tip-enhanced raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte,” Nano Letters, vol. 11, no. 5, pp. 1868–1873, 2011.
[12]  Z. V. Popovi?, Z. Doh?evi?-Mitrovi?, M. ??epanovi?, M. Gruji?-Broj?in, and S. A?krabi?, “Raman scattering on nanomaterials and nanostructures,” Annalen der Physik, vol. 523, no. 1-2, pp. 62–74, 2011.
[13]  T. Vo-Dinh, H. N. Wang, and J. Scaffidi, “Plasmonic nanoprobes for SERS biosensing and bioimaging,” Journal of Biophotonics, vol. 3, no. 1-2, pp. 89–102, 2010.
[14]  R. A. Alvarez-Puebla and L. M. Liz-Marzán, “SERS-based diagnosis and biodetection,” Small, vol. 6, no. 5, pp. 604–610, 2010.
[15]  M. P. Cecchini, J. Hong, C. Lim et al., “Ultrafast surface enhanced resonance raman scattering detection in droplet-based microfluidic systems,” Analytical Chemistry, vol. 83, no. 8, pp. 3076–3081, 2011.
[16]  R. Contreras-Cáceres, S. Abalde-Cela, P. Guardia-Girós et al., “Multifunctional microgel magnetic/optical traps for SERS ultradetection,” Langmuir, vol. 27, no. 8, pp. 4520–4525, 2011.
[17]  W. Kiefer (ed.), “Tip-enhanced Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1335–1457, 2009.
[18]  E. Kasper and K. Lyutovich, Eds., Properties of Silicon and Germanium and SiGe: C, INSPEC, London, UK, 2000.
[19]  G. Nilsson and G. Nelin, “Study of the homology between silicon and germanium by thermal-neutron spectrometry,” Physical Review B, vol. 6, no. 10, pp. 3777–3786, 1972.
[20]  W. Jian, Z. Kaiming, and X. Xide, “Reinvestigation of the TA modes in Ge and Si in Born-von Kármán model,” Solid State Communications, vol. 86, no. 11, pp. 731–734, 1993.
[21]  G. Dolling, Inelastic Scattering of Neutrons in Solids and Liquids, International Atomic Energy Agency, Viena, Austria, 1963.
[22]  G. Nilsson and G. Nelin, “Phonon dispersion relations in Ge at 80?K,” Physical Review B, vol. 3, no. 2, pp. 364–369, 1971.
[23]  J. E. Smith Jr., M. H. Brodsky, B. L. Crowder, and M. I. Nathan, “Raman scattering in amorphous Si, Ge and III-V semiconductors,” Journal of Non-Crystalline Solids, vol. 8–10, pp. 179–184, 1972.
[24]  R. Beserman and T. Bernstein, “Raman scattering measurement of the free-carrier concentration and of the impurity location in boron-implanted silicon,” Journal of Applied Physics, vol. 48, no. 4, pp. 1548–1550, 1977.
[25]  J. Ibá?ez, R. Cuscó, and L. Artús, “Raman scattering determination of free charge density using a modified hydrodynamical model,” Physica Status Solidi B, vol. 223, no. 3, pp. 715–722, 2001.
[26]  W. Limmer, J. Gerster, M. Aigle et al., “Spatially resolved characterization of material composition and free carrier concentration by micro-Raman spectroscopy at surface selectively grown layers,” Journal of Crystal Growth, vol. 188, no. 1–4, pp. 225–230, 1998.
[27]  B. Boudart, B. Prévot, and C. Schwab, “Free-carrier concentration in n-doped InP crystals determined by Raman scattering measurements,” Applied Surface Science, vol. 50, no. 1–4, pp. 295–299, 1991.
[28]  M. Park, J. J. Cuomo, B. J. Rodriguez, W. C. Yang, R. J. Nemanich, and O. Ambacher, “Micro-Raman study of electronic properties of inversion domains in GaN-based lateral polarity heterostructures,” Journal of Applied Physics, vol. 93, no. 12, pp. 9542–9547, 2003.
[29]  M. Gargouri, B. Prevot, and C. Schwab, “Raman scattering evaluation of lattice damage and electrical activity in beryllium-implanted gallium arsenide,” Journal of Applied Physics, vol. 62, no. 9, pp. 3902–3911, 1987.
[30]  J. B. Renucci, M. A. Renucci, and M. Cardona, “Raman sepctroscopy in Ge-Si alloys,” in Proceedings of the International Conference on Light Scattering in Solids, Flammarion Sciences, Paris, France, 1971.
[31]  F. La Via, S. Privitera, M. G. Grimaldi, E. Rimini, S. Quilici, and F. Meinardi, “Determination of C54 nucleation site density in narrow stripes by sheet resistance measurements and μ-Raman spectroscopy,” Microelectronic Engineering, vol. 50, no. 1–4, pp. 139–145, 2000.
[32]  S. Sahli and D. M. Aslam, “Effect of postdeposition anneal on the resistivitity of p-type polycrystalline diamond films,” Applied Physics Letters, vol. 69, no. 14, pp. 2051–2052, 1996.
[33]  M. I. Alonso and K. Winer, “Raman spectra of c-Si1-xGex alloys,” Physical Review B, vol. 39, no. 14, pp. 10056–10062, 1989.
[34]  C. S. Nichols, M. F. Ross, and C. Y. Fong, “Vibrational properties of amorphous silicon in the frequency range 250–450 cm?1,” Physical Review B, vol. 32, no. 2, pp. 1061–1067, 1985.
[35]  S. Fujii, “Process and apparatus for Raman spectra detection of defects in anodized oxide films in semiconductor devices,” Japanese Kokai Tokkyo Koho, p. 6, 2003.
[36]  T. Noda, “Semiconductor analysis apparatus, semiconductor analysis method and method for manufacturing semiconductor device,” US Patent, 2003.
[37]  J. F. Morhange, R. Beserman, and J. Bourgoin, “The use of Raman scattering for defect study in ion implanted semiconductors,” in Proceedings of the International Congress on Appllied Processus Electronic Ioniques, p. 171, 1974.
[38]  D. D. Tuschel and J. P. Lavine, “Micro-Raman characterization of unusual defect structure in arsenic-implanted silicon,” in Proceedings of the 1999 MRS Fall Meeting—Symposium P: Optical Microstructural Characterization of Semiconductors, 2000.
[39]  A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Advances in Physics, vol. 51, no. 2, pp. 799–890, 2002.
[40]  A. D. Yoffe, “Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems,” Advances in Physics, vol. 50, no. 1, pp. 1–208, 2001.
[41]  A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Advances in Physics, vol. 42, no. 2, pp. 173–266, 1993.
[42]  O. J. Pallotta, G. T. P. Saccone, and R. E. Woolford, “Bio-sensor system discriminating between the biliary and pancreatic ductal systems,” Medical and Biological Engineering and Computing, vol. 44, no. 3, pp. 250–255, 2006.
[43]  K. M. Sawicka, A. K. Prasad, and P. I. Gouma, “Metal oxide nanowires for use in chemical sensing applications,” Sensor Letters, vol. 3, no. 1, pp. 31–35, 2005.
[44]  K. W. Adu, H. R. Gutierrez, and P. C. Eklund, “Raman-active phonon line profiles in semiconducting nanowires,” Vibrational Spectroscopy, vol. 42, no. 1, pp. 165–175, 2006.
[45]  K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen, and P. C. Eklund, “Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires,” Applied Physics A, vol. 85, no. 3, pp. 287–297, 2006.
[46]  K. W. Adu, H. R. Gutiérrez, U. J. Kim, and P. C. Eklund, “Inhomogeneous laser heating and phonon confinement in silicon nanowires: a micro-Raman scattering study,” Physical Review B, vol. 73, no. 15, Article ID 155333, 9 pages, 2006.
[47]  K. W. Adu, H. R. Gutiérrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined phonons in Si nanowires,” Nano Letters, vol. 5, no. 3, pp. 409–414, 2005.
[48]  S. Bhattacharya, D. Banerjee, K. W. Adu, S. Samui, and S. Bhattacharyya, “Confinement in silicon nanowires: optical properties,” Applied Physics Letters, vol. 85, no. 11, pp. 2008–2010, 2004.
[49]  Y. Li, J. Xiang, F. Qian et al., “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Letters, vol. 6, no. 7, pp. 1468–1473, 2006.
[50]  F. Patolsky, G. Zheng, and C. M. Lieber, “Nanowire sensors for medicine and the life sciences,” Nanomedicine, vol. 1, no. 1, pp. 51–65, 2006.
[51]  F. Patolsky, G. Zheng, and C. M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nature Protocols, vol. 1, no. 4, pp. 1711–1724, 2006.
[52]  F. Patolsky, G. Zheng, and C. M. Lieber, “Nanowire-based biosensors,” Analytical Chemistry, vol. 78, no. 13, pp. 4260–4269, 2006.
[53]  G. F. Zheng, F. Patolsky, and C. M. Lieber, “INOR 32—general and powerful platform for large-scale, label-free, parallel electrical detection of biomolecules by ultrasensitive nanowire transistor arrays,” in Proceedings of the 231st ACS National Meeting, Atlanta, Ga, USA, March 2006.
[54]  P. V. Radovanovic, C. J. Barrelet, S. Gradecak, F. Qian, and C. M. Lieber, “INOR 70—general synthesis and properties of manganese-doped II-VI and III-V diluted magnetic semiconductor nanowires,” in Proceedings of the 230th ACS National Meeting, Washington, DC, USA, August 2005.
[55]  Y. Li, F. Qian, J. Xiang, and C. M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today, vol. 9, no. 10, pp. 18–27, 2006.
[56]  Y. Li, J. Xiang, F. Qian, et al., “INOR 822—Nanowire radial heterostructures as high electron mobility transistors,” in Proceedings of the 231st ACS National Meeting, Atlanta, Ga, USA, March 2006.
[57]  J. Xiang, A. Vidan, M. Tinkham, R. M. Westervelt, and C. M. Lieber, “Ge/Si nanowire mesoscopic Josephson junctions,” Nature nanotechnology, vol. 1, no. 3, pp. 208–213, 2006.
[58]  J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, vol. 441, no. 7092, pp. 489–493, 2006.
[59]  O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nature Materials, vol. 5, no. 5, pp. 352–356, 2006.
[60]  Z. Zhong, Y. Fang, W. Lu, and C. M. Lieber, “Coherent single charge transport in molecular-scale silicon nanowires,” Nano Letters, vol. 5, no. 6, pp. 1143–1146, 2005.
[61]  Z. H. Zhong, Y. Fang, C. Yang, W. Lu, and C. M. Lieber, “PHYS 1—single charge transport studies in silicon nanowires,” in Proceedings of the 229th ACS National Meeting, San Diego, Calif, USA, March 2005.
[62]  C. Yang, Z. Zhong, and C. M. Lieber, “Materials science: encoding electronic properties by synthesis of axial modulation-doped silicon nanowires,” Science, vol. 310, no. 5752, pp. 1304–1307, 2005.
[63]  S. Grade?ak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Applied Physics Letters, vol. 87, no. 17, Article ID 173111, 3 pages, 2005.
[64]  F. Qian, S. Grade?ak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Letters, vol. 5, no. 11, pp. 2287–2291, 2005.
[65]  Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” Journal of Physical Chemistry B, vol. 104, no. 22, pp. 5215–5216, 2000.
[66]  Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science, vol. 291, no. 5505, pp. 851–853, 2001.
[67]  Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science, vol. 293, no. 5533, pp. 1289–1292, 2001.
[68]  J. Q. Hu, X. L. Ma, N. G. Shang et al., “Large-scale rapid oxidation synthesis of SnO2 nanoribbons,” Journal of Physical Chemistry B, vol. 106, no. 15, pp. 3823–3826, 2002.
[69]  J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Accounts of Chemical Research, vol. 32, no. 5, pp. 435–445, 1999.
[70]  N. M. Hwang, W. S. Cheong, D. Y. Yoon, and D. Y. Kim, “Growth of silicon nanowires by chemical vapor deposition: approach by charged cluster model,” Journal of Crystal Growth, vol. 218, no. 1, pp. 33–39, 2000.
[71]  A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208–211, 1998.
[72]  D. Wang and H. Dai, “Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition,” Angewandte Chemie, vol. 40, no. 24, pp. 4783–4786, 2002.
[73]  Y. F. Zhang, Y. H. Tang, C. Lam et al., “Bulk-quantity Si nanowires synthesized by SiO sublimation,” Journal of Crystal Growth, vol. 212, no. 1-2, pp. 115–118, 2000.
[74]  Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Germanium nanowires sheathed with an oxide layer,” Physical Review B, vol. 61, no. 7, pp. 4518–4521, 2000.
[75]  Y. F. Zhang, Y. H. Tang, N. Wang et al., “Silicon nanowires prepared by laser ablation at high temperature,” Applied Physics Letters, vol. 72, no. 15, pp. 1835–1837, 1998.
[76]  X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Advanced Materials, vol. 12, no. 4, pp. 298–302, 2000.
[77]  X. Duan and C. M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” Journal of the American Chemical Society, vol. 122, no. 1, pp. 188–189, 2000.
[78]  X. Duan, J. Wang, and C. M. Lieber, “Synthesis and optical properties of gallium arsenide nanowires,” Applied Physics Letters, vol. 76, no. 9, pp. 1116–1118, 2000.
[79]  W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires,” Applied Physics Letters, vol. 78, no. 21, pp. 3304–3306, 2001.
[80]  R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, “Phonon confinement and laser heating effects in Germanium nanowires,” Physical Review B, vol. 74, no. 15, Article ID 155421, 6 pages, 2006.
[81]  Y. Wang, R. Zhang, T. Frauenheim, and T. A. Niehaus, “Atomistic simulations of self-trapped exciton formation in silicon nanostructures: the transition from quantum dots to nanowires,” Journal of Physical Chemistry C, vol. 113, no. 30, pp. 12935–12938, 2009.
[82]  K. Nishio, T. Ozaki, T. Morishita, W. Shinoda, and M. Mikami, “Electronic and optical properties of polyicosahedral Si nanostructures: a first-principles study,” Physical Review B, vol. 77, no. 7, Article ID 075431, 13 pages, 2008.
[83]  C. Harris and E. P. O'Reilly, “Nature of the band gap of silicon and germanium nanowires,” Physica E, vol. 32, no. 1-2, pp. 341–345, 2006.
[84]  I. Ponomareva, M. Menon, D. Srivastava, and A. N. Andriotis, “Structure, stability, and quantum conductivity of small diameter silicon nanowires,” Physical Review Letters, vol. 95, no. 26, Article ID 265502, 4 pages, 2005.
[85]  H. Sakaki, “Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures,” Japanese Journal of Applied Physics, vol. 19, no. 12, pp. L735–L738, 1980.
[86]  S. M. Koo, A. Fujiwara, J. P. Han, E. M. Vogel, C. A. Richter, and J. E. Bonevich, “High inversion current in silicon nanowire field effect transistors,” Nano Letters, vol. 4, no. 11, pp. 2197–2201, 2004.
[87]  Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003.
[88]  X. Zhao, C. M. Wei, L. Yang, and M. Y. Chou, “Quantum confinement and electronic properties of silicon nanowires,” Physical Review Letters, vol. 92, no. 23, Article ID 236805, 4 pages, 2004.
[89]  S. Cahangirov and S. Ciraci, “First-principles study of GaAs nanowires,” Physical Review B, vol. 79, no. 16, Article ID 165118, 8 pages, 2009.
[90]  D. Csontos, P. Brusheim, U. Zülicke, and H. Q. Xu, “Spin- 3/2 physics of semiconductor hole nanowires: valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings,” Physical Review B, vol. 79, no. 15, Article ID 155323, 16 pages, 2009.
[91]  Y. H. Zhu and J. B. Xia, “Electronic structure of Mn-doped ZnO quantum wires: a mean-field theory study,” Physical Review B, vol. 75, no. 20, Article ID 205113, 5 pages, 2007.
[92]  Y. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin, and G. Klimeck, “Electronic properties of silicon nanowires,” IEEE Transactions on Electron Devices, vol. 52, no. 6, pp. 1097–1103, 2005.
[93]  H. Scheel, S. Reich, and C. Thomsen, “Electronic band structure of high-index silicon nanowires,” Physica Status Solidi B, vol. 242, no. 12, pp. 2474–2479, 2005.
[94]  M. Kazan, G. Guisbiers, S. Pereira et al., “Thermal conductivity of silicon bulk and nanowires: effects of isotopic composition, phonon confinement, and surface roughness,” Journal of Applied Physics, vol. 107, no. 8, Article ID 083503, 14 pages, 2010.
[95]  M. Hu, K. P. Giapis, J. V. Goicochea, X. Zhang, and D. Poulikakos, “Significant reduction of thermal conductivity in Si/Ge core-shell nanowires,” Nano Letters, vol. 11, no. 2, pp. 618–623, 2011.
[96]  D. Donadio and G. Galli, “Temperature dependence of the thermal conductivity of thin silicon nanowires,” Nano Letters, vol. 10, no. 3, pp. 847–851, 2010.
[97]  L. Liu and X. Chen, “Effect of surface roughness on thermal conductivity of silicon nanowires,” Journal of Applied Physics, vol. 107, no. 3, Article ID 033501, 5 pages, 2010.
[98]  P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires,” Physical Review Letters, vol. 102, no. 12, Article ID 125503, 4 pages, 2009.
[99]  X. Lü, “Lattice thermal conductivity of Si nanowires: effect of modified phonon density of states,” Journal of Applied Physics, vol. 104, no. 5, Article ID 054314, 2008.
[100]  A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, “Phonon backscattering and thermal conductivity suppression in sawtooth nanowires,” Applied Physics Letters, vol. 93, no. 8, Article ID 083112, 3 pages, 2008.
[101]  I. Ponomareva, D. Srivastava, and M. Menon, “Thermal conductivity in thin silicon nanowires: phonon confinement effect,” Nano Letters, vol. 7, no. 5, pp. 1155–1159, 2007.
[102]  T. Thonhauser and G. D. Mahan, “Phonon modes in Si [111] nanowires,” Physical Review B, vol. 69, no. 7, Article ID 075213, 5 pages, 2004.
[103]  S. Bhattacharyya and S. Samui, “Phonon confinement in oxide-coated silicon nanowires,” Applied Physics Letters, vol. 84, no. 9, pp. 1564–1566, 2004.
[104]  S. Piscanec, M. Cantoro, A. C. Ferrari et al., “Raman spectroscopy of silicon nanowires,” Physical Review B, vol. 68, no. 24, Article ID 241312, 4 pages, 2003.
[105]  R. K. Ray, et al., “Temperature dependence of Raman scattering in germanium,” in Proceedings of the 2nd International Conference on Light Scattering in solids, R. Balkanski, Ed., Flammarion, Paris, France, 1971.
[106]  H. Richter, Z. P. Wang, and L. Ley, “The one phonon Raman spectrum in microcrystalline silicon,” Solid State Communications, vol. 39, no. 5, pp. 625–629, 1981.
[107]  I. H. Campbell and P. M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Communications, vol. 58, no. 10, pp. 739–741, 1986.
[108]  P. Alfaro, R. Cisneros, M. Bizarro, M. Cruz-Irisson, and C. Wang, “Raman scattering by confined optical phonons in Si and Ge nanostructures,” Nanoscale, vol. 3, no. 3, pp. 1246–1251, 2011.
[109]  N. Fukata, T. Oshima, N. Okada et al., “Phonon confinement in silicon nanowires synthesized by laser ablation,” Physica B, vol. 376-377, no. 1, pp. 864–867, 2006.
[110]  A. K. Arora, M. Rajalakshmi, T. R. Ravindran, and V. Sivasubramanian, “Raman spectroscopy of optical phonon confinement in nanostructured materials,” Journal of Raman Spectroscopy, vol. 38, no. 6, pp. 604–617, 2007.
[111]  S. Sahoo, S. Dhara, S. Mahadevan, and A. K. Arora, “Phonon confinement in stressed silicon nanocluster,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 9, pp. 5604–5607, 2009.
[112]  W. S. O. Rodden, C. M. S. Torres, and C. N. Ironside, “Three-dimensional phonon confinement in CdSe microcrystallites in glass,” Semiconductor Science and Technology, vol. 10, no. 6, pp. 807–812, 1995.
[113]  S. Khachadorian, H. Scheel, A. Colli, A. Vierck, and C. Thomsen, “Temperature dependence of first- and second-order Raman scattering in silicon nanowires,” Physica Status Solidi B, vol. 247, no. 11-12, pp. 3084–3088, 2010.
[114]  P. R. Stoddart and J. D. Comins, “Quasielastic light scattering in silicon,” Physical Review B, vol. 62, no. 23, pp. 15383–15385, 2000.
[115]  D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Applied Physics Letters, vol. 83, no. 14, pp. 2934–2936, 2003.
[116]  A. I. Hochbaum, R. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163–167, 2008.
[117]  P. A. Temple and C. E. Hathaway, “Multiphonon Raman spectrum of silicon,” Physical Review B, vol. 7, no. 8, pp. 3685–3697, 1973.
[118]  H. Bilz, Phonon Dispersion Relations in Insulators, Springer, Berlin, Germany, 1979.
[119]  M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, “Optical phonon confinement in zinc oxide nanoparticles,” Journal of Applied Physics, vol. 87, no. 5, pp. 2445–2448, 2000.
[120]  D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, “Small-diameter silicon nanowire surfaces,” Science, vol. 299, no. 5614, pp. 1874–1877, 2003.
[121]  S. Khachadorian, K. Papagelis, H. Scheel, A. Colli, A. C. Ferrari, and C. Thomsen, “High pressure Raman scattering of silicon nanowires,” Nanotechnology, vol. 22, no. 19, Article ID 195707, 2011.
[122]  S. Khachadorian, H. Scheel, M. Cantoro, A. Colli, A. C. Ferrari, and C. Thomsen, “The morphology of silicon nanowire samples: a Raman study,” Physica Status Solidi B, vol. 246, no. 11-12, pp. 2809–2812, 2009.
[123]  H. Scheel, S. Khachadorian, M. Cantoro, A. Colli, A. C. Ferrari, and C. Thomsen, “Silicon nanowire optical Raman line shapes at cryogenic and elevated temperatures,” Physica Status Solidi B, vol. 245, no. 10, pp. 2090–2093, 2008.
[124]  J. Wu, D. Zhang, Q. Lu, H. R. Gutierrez, and P. C. Eklund, “Polarized Raman scattering from single GaP nanowires,” Physical Review B, vol. 81, no. 16, Article ID 165415, 8 pages, 2010.
[125]  H. Scheel, S. Reich, A. C. Ferrari, M. Cantoro, A. Colli, and C. Thomsen, “Raman scattering on silicon nanowires: the thermal conductivity of the environment determines the optical phonon frequency,” Applied Physics Letters, vol. 88, no. 23, Article ID 233114, 3 pages, 2006.
[126]  R. Gupta, Q. Xiong, C. K. Adu, U. J. Kim, and P. C. Eklund, “Laser-induced fano resonance scattering in silicon nanowires,” Nano Letters, vol. 3, no. 5, pp. 627–631, 2003.
[127]  T. Kanata, H. Murai, and K. Kubota, “Raman and x-ray scattering from ultrafine semiconductor particles,” Journal of Applied Physics, vol. 61, no. 3, pp. 969–971, 1987.
[128]  M. Balkanski, R. F. Wallis, and E. Haro, “Anharmonic effects in light scattering due to optical phonons in silicon,” Physical Review B, vol. 28, no. 4, pp. 1928–1934, 1983.
[129]  H. Tang and I. P. Herman, “Raman microprobe scattering of solid silicon and germanium at the melting temperature,” Physical Review B, vol. 43, no. 3, pp. 2299–2304, 1991.
[130]  H. H. Burke and I. P. Herman, “Temperature dependence of Raman scattering in Ge1-xSix alloys,” Physical Review B, vol. 48, no. 20, pp. 15016–15024, 1993.
[131]  B. Li, D. Yu, and S. L. Zhang, “Raman spectral study of silicon nanowires,” Physical Review B, vol. 59, no. 3, pp. 1645–1648, 1999.
[132]  P. Mishra and K. P. Jain, “First- and second-order Raman scattering in nanocrystalline silicon,” Physical Review B, vol. 64, no. 7, Article ID 073304, 4 pages, 2001.
[133]  A. L. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon confinement in nanomaterials,” in Encyclopedia of Nanoscience and Technology, vol. 8, pp. 499–512, American Scientific Publisher, 2004.
[134]  C. M. S. Torres, A. Zwick, F. Poinsotte, et al., “Observations of confined acoustic phonons in silicon membranes,” Physica Status Solidi C, vol. 1, no. 11, pp. 2609–2612, 2004.
[135]  X. Lü, J. H. Chu, and W. Z. Shen, “Modification of the lattice thermal conductivity in semiconductor rectangular nanowires,” Journal of Applied Physics, vol. 93, no. 2, pp. 1219–1229, 2003.
[136]  X. Lü and J. Chu, “Lattice thermal conductivity in a silicon nanowire with square cross section,” Journal of Applied Physics, vol. 100, no. 1, Article ID 014305, 6 pages, 2006.
[137]  Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, “Monte Carlo simulation of silicon nanowire thermal conductivity,” Journal of Heat Transfer, vol. 127, no. 10, pp. 1129–1137, 2005.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133