全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2013 

Correlating Physicochemical Properties of Boronic Acid-Chitosan Conjugates to Glucose Adsorption Sensitivity

DOI: 10.3390/pharmaceutics5010069

Keywords: phenyl boronic acid, chitosan, glucose, adsorption, polymer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phenyl boronic acid (PBA), which is known to interact with glucose, was covalently bonded to chitosan by direct reductive N-alkylation of chitosan with 4-formylphenylboronic acid (4-FPBA). Evidence of PBA bonding on chitosan was assessed by FTIR, ToF-SIMS, SEM, DSC and glucose adsorption sensitivity measurements. FTIR spectra showed strong signals at 1560 and 630 cm ?1 indicating the formation of p-substituted benzene. Similarly, ToF-SIMS analyses on the conjugates registered fragments of boron ion (B ?) at 11.0 m/ z whose intensity increased in proportion to 4-FPBA loading. The degree to which PBA was bonded to chitosan was related to the 4-FPBA load used in the reaction (termed F1 through to F6 with increasing 4-FPBA load). Glucose adsorption sensitivity to PBA-bonded chitosan was directly related to the amount of PBA functionality within the conjugates and the physical nature of the matrices (porous or crystalline). Topographic analysis by SEM revealed that PBA-chitosan conjugates F1, F2 and F3 have porous matrices and their sensitivity to glucose adsorption was directly proportional to the degree of PBA substitution onto chitosan. Conversely, conjugates F4, F5 and F6 appeared crystalline under SEM and glucose adsorption sensitivity decreased in proportion to amount of PBA bonded to chitosan. The crystalline nature of the conjugates was confirmed by DSC, where the exothermic event related to the melting of the bonded PBA moiety, occurred at 338 °C. Thus, decreased sensitivity to glucose adsorption by the conjugates can be ascribed to the crystallinity imparted by increased content of the bonded PBA moiety, providing an optimal loading of PBA in terms of maximizing response to glucose.

References

[1]  Gough, D.A.; Kumosa, L.A.; Routh, T.L.; Lin, J.T.; Lucisano, J.Y. Function of an implanted glucose sensor for more than 1 year in animals. Sci. Transl. Med. 2010, 2, 42–53.
[2]  Kaur, G.; Lin, N.; Fung, H.; Wang, B. Boronic Acid-based Glucose Sensors in Topics in Fluorescence Spectroscopy. In Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing; Geddes, C.D., Lakowicz, J.R., Eds.; Springer Press: New York, NY, USA, 2006; Volume 11, pp. 377–397.
[3]  James, T.D.; Sandanayake, K.; Shinkai, S. Saccharide sensing with molecular receptors based on boronic acid. Angewandte Chemie Int. Ed. 1996, 35, 1910–1922, doi:10.1002/anie.199619101.
[4]  Vahlberg, C.; Linares, M.; Norman, P.; Uvdal, K. Phenylboronic Ester- and Phenylboronic Acid-Terminated Alkanethiols on Gold Surfaces. J. Phys. Chem. 2012, 116, 796–806, doi:10.1021/jp210675h.
[5]  Cordes, D.B.; Suri, J.T.; Cappuccio, F.E.; Camara, J.N.; Gamsey, S.; Sharrett, Z.; Thoniyot, P.; Wessling, R.A.; Singaram, B. Two-component optical sugar sensing using boronic acid-substituted viologens with anionic fluorescent dyes modulated quenching with viologens as a method for monosaccharide detection. In Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing; Geddes, C.D., Lakowicz, J.R., Eds.; Springer Press: New York, NY, USA, 2006; Volume 11, pp. 47–87.
[6]  Ho, J.A.A.; Hsu, W.L.; Liao, W.C.; Chiu, J.K.; Chen, M.L.; Chang, H.C.; Li, C.C. Synthesis and characterization of a novel derivative of chitosan. Biosens. Bioelectron. 2010, 26, 1021–1027, doi:10.1016/j.bios.2010.08.048.
[7]  Shoji, E.; Freund, M.S. Potentiometric saccharide detection based on the pK(a) changes of poly(aniline boronic acid). J. Am. Chem. Soc. 2002, 124, 12486–12493, doi:10.1021/ja0267371.
[8]  James, T.D.; Sandanayake, S.K.R.A.; Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 1995, 374, 345–347, doi:10.1038/374345a0.
[9]  Takahashi, S.; Anzai, J. Planar microsensors based on phenylboronic acid Self-Assembled Monolayers. Langmuir 2005, 21, 5102–5107, doi:10.1021/la050171n.
[10]  Ori, A.; Shinkai, S. Electrochemical detection of saccharides by the redox cycle of a chiral ferrpcenylboronic acid derivative: A novel method for sugar sensing. J. Chem. Soc. Chem. Commun. 1995, 17, 1771–1772.
[11]  Badugu, R.; Lakowicz, J.R.; Geddes, C.D. A glucose-sensing contact lens: From bench top to patient. Curr. Opin. Biotechnol. 2005, 16, 100–107, doi:10.1016/j.copbio.2004.12.007.
[12]  Edwards, N.Y.; Sager, T.W.; McDevitt, J.T.; Anslyn, E.V. Boronic Acid Based Peptidic Receptors for Pattern-Based Saccharide Sensing in Neutral Aqueous Media, an Application in Real-Life Samples. J. Am. Chem. Soc. 2007, 129, 13575–13583.
[13]  Mader, H.S.; Wolfbeis, O.S. Boronic acid based probes formicrodetermination of saccharides and glycosylated biomolecules. Microchimica Acta 2008, 162, 1–34, doi:10.1007/s00604-008-0947-8.
[14]  Fang, H.; Kaur, G.; Wang, B. Progress in Boronic Acid-Based Fluorescent Glucose Sensors. J. Fluoresc. 2004, 14, 481–489, doi:10.1023/B:JOFL.0000039336.51399.3b.
[15]  Kitano, S.; Kataoka, K.; Koyama, Y.; Okano, T.; Sakurai, Y. Glucose-responsive complex formation between poly(vinyl alcohol) and poly(N-vinyl-2-pyrrolidone) with pendent phenylboronic acid moieties. Makromolekulare Chemie Rapid Commun. 1991, 12, 227–233, doi:10.1002/marc.1991.030120405.
[16]  Kataoka, K.; Miyazaki, H.; Okano, T.; Sakurai, Y. Sensitive glucose-induced change of the lower critical solution temperature of poly[N,N-dimethylacrylamide-co-3-(acrylamido)phenylboronic acid] in physiological saline. Macromolecules 1994, 27, 1061–1062, doi:10.1021/ma00082a028.
[17]  Obaidat, A.A.; Park, K. Characterization of protein release through glucose-sensitive hydrogel membranes. Biomaterials 1997, 18, 801–806, doi:10.1016/S0142-9612(96)00198-6.
[18]  Illum, L.; Farraj, N.F.; Davis, S.S. Chitosan as a novel nasal delivery system for peptide drugs. Pharm. Res. 1994, 11, 1186–1189, doi:10.1023/A:1018901302450.
[19]  Bigucci, F.; Luppi, B.; Cerchiara, T.; Sorrenti, M.; Bettinetti, G.; Rodriguez, L.; Zecchi, V. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci. 2008, 35, 435–441, doi:10.1016/j.ejps.2008.09.004.
[20]  Wittaya-Areekul, S.; Kruenate, J.; Prahsarn, C. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Int. J. Pharm. 2006, 312, 113–118, doi:10.1016/j.ijpharm.2006.01.003.
[21]  Lorenzo-Lamosa, M.L.; Remu?án-López, C.; Vila-Jato, J.L.; Alonso, M.J. Design of microencapsulated chitosan microspheres for colonic drug delivery. J. Control. Release 1992, 52, 109–118.
[22]  Sailaja, A.K.; Amreshwar, P.; Chakravarty, P. Chitosan nanoparticles as a drug delivery system. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 474–484.
[23]  Huang, M.; Huang, Z.L.; Bilgen, M.; Berkland, C. MRI Contrast enhanced polyelectrolyte complexes. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 30–40, doi:10.1016/j.nano.2007.10.085.
[24]  Wu, Z.; Zhang, S.; Zhang, X.; Shu, S.; Chu, T.; Yu, D. Phenylboronic acid grafted chitosan as a glucose-sensitive vehicle for controlled insulin release. J. Pharm. Sci. 2011, 100, 2278–2286, doi:10.1002/jps.22463.
[25]  Osman, Z.; Arof, A. FTIR studies of chitosan acetate based polymer electrolytes. Electrochim. Acta 2003, 48, 993–999, doi:10.1016/S0013-4686(02)00812-5.
[26]  Van de Velde, K.; Kiekens, P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydr. Polym. 2004, 58, 409–416, doi:10.1016/j.carbpol.2004.08.004.
[27]  Boonsongrit, Y.; Mueller, B.W.; Mitrevej, A. Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm. 2008, 69, 388–395, doi:10.1016/j.ejpb.2007.11.008.
[28]  Matsumoto, M.; Shimizu, T.; Kondo, K. Selective adsorption of glucose on novel chitosan gel modified by phenylboronate. Seper. Purif. Tech. 2002, 29, 229–233, doi:10.1016/S1383-5866(02)00085-0.
[29]  Hall, D.G. Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Hall, G., Ed.; John Wiley & Sons: Weinheim, Germany, 2006; pp. 1–99.
[30]  Ding, W.; Lian, Q.; Samuels, R.J.; Polk, M.B. Synthesis and characterization of a novel derivative of chitosan. Polymers 2003, 44, 547–556, doi:10.1016/S0032-3861(02)00834-0.
[31]  Kittur, F.S.; Harigh, P.K.V.; Udaya, S.K.; Tharanathan, R.N. Synthesis and characterization of a novel derivative of chitosan. Carbohydr. Polym. 2002, 49, 185–193, doi:10.1016/S0144-8617(01)00320-4.
[32]  Lewandowska, K. Thermal study of chitosan blends with vinyl polymers. Available online: http://www.ptchit.lodz.pl/pliki/PTChit_%28i0z4bnqnzy93qke2%29.pdf (accessed on 11th July,2012).

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133