Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake.
References
[1]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037.
[2]
Huges, G. Nanostructure- mediated drug delivery. Nanomedicine 2005, 10, 2543–2548.
[3]
Berry, C.C. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224003–224012, doi:10.1088/0022-3727/42/22/224003.
[4]
Kamei, K.; Mukai, Y.; Kojima, H.; Yoshikwa, T.; Yoshikawa, M.; Kiyohara, G. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 2009, 30, 1809–1814, doi:10.1016/j.biomaterials.2008.12.015.
[5]
Berry, C.C. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine 2008, 3, 357–368, doi:10.2217/17435889.3.3.357.
[6]
Harush-Frenkel, O.; Altschuler, Y.; Benita, S. Nanoparticle-cell interactions: drug delivery implications. Crit. Rev. Ther. Drug Carrier Syst. 2008, 25, 485–554, doi:10.1615/CritRevTherDrugCarrierSyst.v25.i6.10.
[7]
Bareford, L.M.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Ad. Drug Rev. 2007, 59, 748–758, doi:10.1016/j.addr.2007.06.008.
[8]
von Kleist, L.; Stahlschmidt, W.; Bulut, H.; Gromova, K. Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition. Cell 2011, 146, 471–484.
[9]
Richard, J.P.; Melikov, K.; Vives, E.; Ramos, C.; Vebeure, B.; Gait, M.J. Cell penetrating peptides. A re-evaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003, 278, 585–590.
[10]
Lundberg, M.; Johanasson, M. Positively charged DNA- binding proteins cause apparent cell membrane translocation. Biochem. Biophy. Res. Commun. 2001, 8, 848–866.
[11]
Lundberg, P.; Langel, U. A brief introduction to cell-penetrating peptides. J. Molec. Recog. 2003, 16, 227–233, doi:10.1002/jmr.630.
[12]
Futaki, S.; Suzuki, T.; Ohashi, W. Arginine-rich peptides. An abundant source of membrane- permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 2001, 276, 5836–5840.
[13]
Zhang, K.; Fang, H.; Chen, Z.; Taylor, J.S.; Wooley, K.L. Shape effects of nanoparticles conjucated with cell-penetrating peptides (HIV tat PTD) on CHO cell uptake. Bioconjug Chem. 2008, 19, 1880–1887, doi:10.1021/bc800160b.
[14]
Elliot, G.; O’Hare, P. Intracellular trafficking of VP22-GFP fusion proteins. Gene Therapy 1999, 6, 149–151, doi:10.1038/sj.gt.3300850.
[15]
Ho, A.; Schwarze, S.R.; Mermelstein, S.J.; Waksman, G.; Dowdy, S.F. Synthetic protein transduction domains; enhanced transduction potential in vitro and in vivo. Cancer Res. 2001, 61, 474–477.
[16]
King, J.E.; Eugenin, E.A.; Buchner, C.M.; Berman, J.W. HIV tat and neurotoxicity. Microbes Infect. 2006, 8, 1347–1357, doi:10.1016/j.micinf.2005.11.014.
[17]
Derossi, D.; Calvet, S.; Trembleau, A.; Brunissen, A.; Chassaing, G.; Prochiantz, A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor independent. J Biol. Chem. 1996, 271, 18188–18193.
[18]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeoprotein translocates through biological membranes. J Biol. Chem. 1994, 269, 10444–10450.
[19]
Elliot, G.; O’Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997, 88, 223–233, doi:10.1016/S0092-8674(00)81843-7.
[20]
Derossi, D.; Chassaing, G.; Prochiantz, A. Trojan peptide: the penetratin system for intracellular delivery. Trends Cell Biol. 1998, 8, 84–87.
[21]
Widder, K.J.; Senyei, A.E; Scarpelli, D.G. Magnetic microspheres-Model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 1978, 158, 141–146.
[22]
Luhmann, T.; Rimman, M.; Bittermann, A.G.; Hall, H. Cellular uptake and intracellular pathway of PLL-g-PEG-DNA nanoparticles. Bioconjug Chem. 2008, 19, 1907–1916, doi:10.1021/bc800206r.
[23]
Dejardin, T.; de la Fuente, J.; Pino, P.; Furlani, E.P.; Mullin, M.; Smith, C.A.; Berry, C.C. Influence of both a static field and penetratin on magnetic nanoparticle delivery into fibroblasts. Nanomedicine 2011, 6, 1719–1731, doi:10.2217/nnm.11.65.
[24]
Child, H.W.; Del Pino, P.A.; De la Fuente, J.; Hursthouse, A.S.; Stirling, D.; Mullen, M.; McPhee, G.M.; Nixon, C.; Jayawarna, V.; Berry, C.C. Working Together: The Combined Application of a Magnetic Field and Penetratin for the Delivery of Magnetic Nanoparticles to Cells in 3D. ACS Nano 2011, 5, 7910–7919.
Lindsay, M.A. Peptide-mediated cell delivery: application in protein target validation. Curr. Opin. Pharmacol. 2002, 2, 587–594.
[27]
Smith, C.A.; de la Fuente, J.; Pelaz, B.; Furlani, E.P.; Mullin, M.; Berry, C.C. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 2010, 15, 4392–4400.
[28]
Scherer, F.; Anton, M.; Schillinger, U.; Bergemann, C.; Kruger, A.; Gansbacher, B.; Plank, C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002, 9, 102–109, doi:10.1038/sj.gt.3301624.
[29]
Derossi, D.; Calvet, S.; Trembleau, A.; Brunissen, A.; Chassaing, G.; Prochiantz, A. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem. 1996, 271, 18188–18193.
[30]
Suzuki, T.; Futaki, S.; Niwa, M.; Tanaka, S.; Ueda, K.; Sugiura, Y. Possible existence of common internalization mechanisms among arginine-rich peptides. J. Biol. Chem. 2002, 277, 2437–2443.
[31]
Duchardt, F.; Fotin-Mleczek, M.; Schwarz, H.; Fischer, R.; Brock, R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007, 8, 848–866, doi:10.1111/j.1600-0854.2007.00572.x.
[32]
Miyakoshi, J. The review of cellular effets of a static magnetic field. Sci Tech Adv Mat. 2006, 7, 305–307, doi:10.1016/j.stam.2006.01.004.
[33]
Bae, J.E; Huh, M.I.; Ryu, B.K.; Do, J.Y.; Jin, S.U. Moon, M.J.; Jung, J.C.; Chang, Y.; Kim, E.; Chi, S.G.; Lee, G.H.; Chae, K.S. The effects of static magnetic fields on the aggregation and cytotoxicity of magnetic nanopartiles. Biomaterials. 2011, 32, 9401–9414, doi:10.1016/j.biomaterials.2011.08.075.
[34]
Barnes, A.L.; Wassel, R.A.; Mondalek, F.; Chen, K.; Dormer, K.J.; Kopke, R.D. Magnetic characterisations of superparamagnetic nanoparticles pulled through model membranes. Biomagn. Res. Technol. 2007, 5, 1, doi:10.1186/1477-044X-5-1.
[35]
Liu, Q.; Zhang, J.; Xia, W.; Gu, H. Magnetic field enhanced cell uptake of magnetic silica mesoporous nanoparticles. Nanoscale 2012, 4, 3415–3421, doi:10.1039/c2nr30352c.