全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2013 

Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

DOI: 10.3390/pharmaceutics5010179

Keywords: pharmacovigilance, drug safety surveillance, adverse events data mining, gamma Poisson shrinkage, tree-based scan statistic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Drug adverse event (AE) signal detection using the Gamma Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal detection using large observational health plan databases can expand medication safety surveillance. Methods: Using data from nine health plans, we conducted a pilot study to evaluate the implementation and findings of the GPS approach for two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels of granularity. Several signaling thresholds were assessed. GPS results were compared to findings from a companion study using the identical analytic dataset but an alternative statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 statistical signals across two signaling thresholds and two methods, including closely-related signals of overlapping diagnosis definitions. Initial review found that most signals represented known adverse drug reactions or confounding. About 31% of signals met the highest signaling threshold. Conclusions: The GPS method was successfully applied to observational health plan data in a distributed data environment as a drug safety data mining method. There was substantial concordance between the GPS and TreeScan approaches. Key method implementation decisions relate to defining exposures and outcomes and informed choice of signaling thresholds.

References

[1]  Bate, A.; Evans, S.J. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol. Drug Saf. 2009, 18, 427–436, doi:10.1002/pds.1742.
[2]  Curtis, J.R.; Cheng, H.; Delzell, E.; Fram, D.; Kilgore, M.; Saag, K.; Yun, H.; Dumouchel, W. Adaptation of Bayesian data mining algorithms to longitudinal claims data: Coxib safety as an example. Med. Care 2008, 46, 969–975, doi:10.1097/MLR.0b013e318179253b.
[3]  Schuemie, M.J. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol. Drug Saf. 2011, 20, 292–299, doi:10.1002/pds.2051.
[4]  Norén, G.N.; Bate, A.; Hopstadius, J.; Star, K.; Edwards, I.R. Temporal Pattern Discovery for Treands and Transient Effects: Its Application to Patient Records, Proceedings of The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, August 24–27, 2008; pp. 963–971.
[5]  Brown, J.S.; Petronis, K.; Bate, A.; Zhang, F.; Dashevsky, I.; Kulldorff, M.; Avery, T.A.; Davis, R.L.; Andrade, S.E.; Dublin, S.; et al. Comparing Two Methods for Detecting Adverse Event Signals in Observational Data: Empirical Bayes Gamma Poisson Shrinker and Tree-Based Scan Statistic, Proceedings of The 27th International Conference on Pharmacoepidemiology and Therapeutic Risk Management, The International Society for Pharmacoepidemiology Chicago, Chicago, IL, USA, August 14–17, 2011; p. Abstract 575.
[6]  Kulldorff, M.; Dashevsky, I.; Avery, T.A.; Chan, K.A.; Davis, R.L.; Graham, D.; Platt, R.; Andrade, S.E.; Boudreau, D.; Gunter, M.J.; et al. Drug Safety Data Mining with a Tree-Based Scan Statistic, Proceedings of 26th International Conference on Pharmacoepidemiology and Therapeutic Risk Management, Brighton, England, UK, 2010.
[7]  Park, M.Y.; Yoon, D.; Lee, K.; Kang, S.Y.; Park, I.; Lee, S.H.; Kim, W.; Kam, H.J.; Lee, Y.H.; Kim, J.H.; et al. A novel algorithm for detection of adverse drug reaction signals using a hospital electronic medical record database. Pharmacoepidemiol. Drug Saf. 2011, 20, 598–607, doi:10.1002/pds.2139.
[8]  Jin, H.W.; Chen, J.; He, H.; Williams, G.J.; Kelman, C.; O’Keefe, C.M. Mining unexpected temporal associations: Applications in detecting adverse drug reactions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 488–500, doi:10.1109/TITB.2007.900808.
[9]  Walker, A.M. Signal detection for vaccine side effects that have not been specified in advance. Pharmacoepidemiol. Drug Saf. 2010, 19, 311–317, doi:10.1002/pds.1889.
[10]  Harpaz, R.; DuMouchel, W.; Shah, N.H.; Madigan, D.; Ryan, P.; Friedman, C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin. Pharmacol. Ther. 2012, 91, 1010–1021, doi:10.1038/clpt.2012.50.
[11]  Zorych, I.; Madigan, D.; Ryan, P.; Bate, A. Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat. Methods Med. Res. 2011, 22, 39–56, doi:10.1177/0962280211403602.
[12]  Norén, G.N.; Hopstadius, J.; Bate, A.; Star, K.; Edwards, I.R. Temporal pattern discovery in longitudinal electronic patient records. Data Min. Knowl. Discov. 2010, 20, 361–387, doi:10.1007/s10618-009-0152-3.
[13]  Schuemie, M.J.; Coloma, P.M.; Straatman, H.; Herings, R.M.; Trifiro, G.; Matthews, J.N.; Prieto-Merino, D.; Molokhia, M.; Pedersen, L.; Gini, R.; et al. Using electronic health care records for drug safety signal detection: a comparative evaluation of statistical methods. Med. Care 2012, 50, 890–897, doi:10.1097/MLR.0b013e31825f63bf.
[14]  Norén, G.N.; Hopstadius, J.; Bate, A.; Edwards, I.R. Safety surveillance of longitudinal databases: Results on real-world data. Pharmacoepidemiol. Drug Saf. 2012, 21, 673–675, doi:10.1002/pds.3258.
[15]  Noren, G.N.; Hopstadius, J.; Bate, A.; Edwards, I.R. Safety surveillance of longitudinal databases: Methodological considerations. Pharmacoepidemiol. Drug Saf. 2011, 20, 714–717, doi:10.1002/pds.2151.
[16]  Schuemie, M.J. Safety surveillance of longitudinal databases: further methodological considerations. Pharmacoepidemiol. Drug Saf. 2012, 21, 670–672, doi:10.1002/pds.3259.
[17]  Bate, A.; Brown, E.G.; Goldman, S.A.; Hauben, M. Terminological challenges in safety surveillance. Drug Saf. 2012, 35, 79–84, doi:10.2165/11598700-000000000-00000.
[18]  Ryan, P.B.; Madigan, D.; Stang, P.E.; Overhage, J.M.; Racoosin, J.A.; Hartzema, A.G. Empirical assessment of methods for risk identification in healthcare data: Results from the experiments of the Observational Medical Outcomes Partnership. Stat. Med. 2012, 31, 4401–4415, doi:10.1002/sim.5620.
[19]  Vaccine Safety Monitoring—Adverse Events. Available online: http://www.mini-sentinel.org/methods/methods_development/details.aspx?ID=1028 (accessed on 15 August 2012).
[20]  Yih, W.K.; Kulldorff, M.; Fireman, B.H.; Shui, I.M.; Lewis, E.M.; Klein, N.P.; Baggs, J.; Weintraub, E.S.; Belongia, E.A.; Naleway, A.; et al. Active surveillance for adverse events: The experience of the Vaccine Safety Datalink project. Pediatrics 2011, 127, S54–S64, doi:10.1542/peds.2010-1722I.
[21]  Platt, R.; Davis, R.; Finkelstein, J.; Go, A.S.; Gurwitz, J.H.; Roblin, D.; Soumerai, S.; Ross-Degnan, D.; Andrade, S.; Goodman, M.J.; et al. Multicenter epidemiologic and health services research on therapeutics in the HMO Research Network Center for Education and Research on Therapeutics. Pharmacoepidemiol. Drug Saf. 2001, 10, 373–377, doi:10.1002/pds.607.
[22]  Platt, R.; Andrade, S.E.; Davis, R.L.; Destefano, F.; Finkelstein, J.A.; Goodman, M.J.; Gurwitz, J.Y.; Go, A.S.; Martinson, B.C.; Raebel, M.A.; et al. Pharmacovigilance in the HMO Research Network. In Pharmacovigilance; Mann, R.D., Andrews, E.B., Eds.; Wiley: New York, NY, USA, 2002; pp. 392–398.
[23]  Raebel, M.A.; Lyons, E.E.; Andrade, S.E.; Chan, K.A.; Chester, E.A.; Davis, R.L.; Ellis, J.L.; Feldstein, A.; Gunter, M.J.; Lafata, J.E.; et al. Laboratory monitoring of drugs at initiation of therapy in ambulatory care. J. Gen. Intern. Med. 2005, 20, 1120–1126, doi:10.1111/j.1525-1497.2005.0257.x.
[24]  Raebel, M.A.; McClure, D.L.; Simon, S.R.; Chan, K.A.; Feldstein, A.; Andrade, S.E.; Lafata, J.E.; Roblin, D.; Davis, R.L.; Gunter, M.J.; et al. Laboratory monitoring of potassium and creatinine in ambulatory patients receiving angiotensin converting enzyme inhibitors and angiotensin receptor blockers. Pharmacoepidemiol. Drug Saf. 2007, 16, 55–64, doi:10.1002/pds.1217.
[25]  Simon, S.R.; Andrade, S.E.; Ellis, J.L.; Nelson, W.W.; Gurwitz, J.H.; Lafata, J.E.; Davis, R.L.; Feldstein, A.; Raebel, M.A. Baseline laboratory monitoring of cardiovascular medications in elderly health maintenance organization enrollees. J. Am. Geriatr. Soc. 2005, 53, 2165–2169, doi:10.1111/j.1532-5415.2005.00498.x.
[26]  Simon, S.R.; Chan, K.A.; Soumerai, S.B.; Wagner, A.K.; Andrade, S.E.; Feldstein, A.C.; Lafata, J.E.; Davis, R.L.; Gurwitz, J.H. Potentially inappropriate medication use by elderly persons in U.S. Health Maintenance Organizations, 2000–2001. J. Am. Geriatr. Soc. 2005, 53, 227–232.
[27]  Wagner, A.K.; Chan, K.A.; Dashevsky, I.; Raebel, M.A.; Andrade, S.E.; Lafata, J.E.; Davis, R.L.; Gurwitz, J.H.; Soumerai, S.B.; Platt, R. FDA drug prescribing warnings: is the black box half empty or half full? Pharmacoepidemiol. Drug Saf. 2006, 15, 369–386, doi:10.1002/pds.1193.
[28]  Chan, J.; Hui, R.L.; Levin, E. Differential association between statin exposure and elevated levels of creatine kinase. Ann. Pharmacother. 2005, 39, 1611–1616, doi:10.1345/aph.1G035.
[29]  Velentgas, P.; Bohn, R.L.; Brown, J.S.; Chan, K.A.; Gladowski, P.; Holick, C.N.; Kramer, J.M.; Nakasato, C.; Spettell, C.M.; Walker, A.M.; et al. A distributed research network model for post-marketing safety studies: The Meningococcal Vaccine Study. Pharmacoepidemiol. Drug Saf. 2008, 17, 1226–1234, doi:10.1002/pds.1675.
[30]  Brown, J.; Moore, K.; Braun, M.; Ziyadeh, N.; Chan, K.; Lee, G.; Kulldorff, M.; Walker, A.; Platt, R. Active influenza vaccine safety surveillance: Potential within a healthcare claims environment. Med. Care 2009, 47, 1251–1257, doi:10.1097/MLR.0b013e3181b58b5c.
[31]  Behrman, R.E.; Benner, J.S.; Brown, J.S.; McClellan, M.; Woodcock, J.; Platt, R. Developing the Sentinel System—A national resource for evidence development. N. Engl. J. Med. 2011, 364, 498–499, doi:10.1056/NEJMp1014427.
[32]  Perveze, Z.; Johnson, M.W.; Rubin, R.A.; Sellers, M.; Zayas, C.; Jones, J.L.; Cross, R.; Thomas, K.; Butler, B.; Shrestha, R. Terbinafine-induced hepatic failure requiring liver transplantation. Liver Transpl. 2007, 13, 162–164, doi:10.1002/lt.21034.
[33]  Lou, H.Y.; Fang, C.L.; Fang, S.U.; Tiong, C.; Cheng, Y.C.; Chang, C.C. Hepatic failure related to itraconazole use successfully treated by corticosteroids. Hepat. Mon. 2011, 11, 843–846.
[34]  Nikkels, A.F.; Nikkels-Tassoudji, N.; Pierard, G.E. Oral antifungal-exacerbated inflammatory flare-up reactions of dermatomycosis: Case reports and review of the literature. Am. J. Clin. Dermatol. 2006, 7, 327–331, doi:10.2165/00128071-200607050-00007.
[35]  Can?ado, G.G.; Fujiwara, R.T.; Freitas, P.A.; Correa-Oliveira, R.; Bethony, J.M. Acute generalized exanthematous pustulosis induced by itraconazole: an immunological approach. Clin. Exp. Dermatol. 2009, 34, e709–e711, doi:10.1111/j.1365-2230.2009.03440.x.
[36]  Elixhauser, A.; Steiner, C.; Palmer, L. Clinical Classifications Software (CCS), 2009. Agency for Healthcare Research and Quality. Available online: http://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp (accessed on 15 August 2012).
[37]  DuMouchel, W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Am. Stat. 1999, 53, 177–190.
[38]  Fram, D.; Almenoff, J.S.; Dumouchel, W. Empirical Bayesian Data Mining for Discovering Patterns in Post-Marketing Drug Safety. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, USA, August 24?27, 2003; pp. 359–368.
[39]  Banks, D.; Woo, E.J.; Burwen, D.R.; Perucci, P.; Braun, M.M.; Ball, R. Comparing data mining methods on the VAERS database. Pharmacoepidemiol. Drug Saf. 2005, 14, 601–609, doi:10.1002/pds.1107.
[40]  Almenoff, J.S.; DuMouchel, W.; Kindman, L.A.; Yang, X.; Fram, D. Disproportionality analysis using empirical Bayes data mining: A tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol. Drug Saf. 2003, 12, 517–521, doi:10.1002/pds.885.
[41]  Szarfman, A.; Machado, S.G.; O’Neill, R.T. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002, 25, 381–392, doi:10.2165/00002018-200225060-00001.
[42]  Kulldorff, M.; Dashevsky, I.; Avery, T.; Chan, A.; Davis, R.; Graham, D.; Platt, R.; Andrade, S.; Boudreau, D.; Dublin, S.; et al. Drug Safety Data Mining with a Tree-Based Scan Statistic. Pharmacoepidemiol. Drug Saf. 2013. in press.
[43]  Kulldorff, M.; Fang, Z.; Walsh, S.J. A tree-based scan statistic for database disease surveillance. Biometrics 2003, 59, 323–331, doi:10.1111/1541-0420.00039.
[44]  Tuccori, M.; Bresci, F.; Guidi, B.; Blandizzi, C.; Del Tacca, M.; Di Paolo, M. Fatal hepatitis after long-term pulse itraconazole treatment for onychomycosis. Ann. Pharmacother. 2008, 42, 1112–1117, doi:10.1345/aph.1L051.
[45]  Kohli, R.; Hadley, S. Fungal arthritis and osteomyelitis. Infect. Dis. Clin. North Am. 2005, 19, 831–851, doi:10.1016/j.idc.2005.08.004.
[46]  Avorn, J.; Schneeweiss, S. Managing drug-risk information—What to do with all those new numbers. N. Engl. J. Med. 2009, 361, 647–649, doi:10.1056/NEJMp0905466.
[47]  Robb, M.A.; Racoosin, J.A.; Sherman, R.E.; Gross, T.P.; Ball, R.; Reichman, M.E.; Midthun, K.; Woodcock, J. The US Food and Drug Administration’s Sentinel Initiative: Expanding the horizons of medical product safety. Pharmacoepidemiol. Drug Saf. 2012, 21, 9–11, doi:10.1002/pds.2311.
[48]  Platt, R.; Carnahan, R.M.; Brown, J.S.; Chrischilles, E.; Curtis, L.H.; Hennessy, S.; Nelson, J.C.; Racoosin, J.A.; Robb, M.; Schneeweiss, S.; et al. The U.S. Food and Drug Administration’s Mini-Sentinel program: Status and direction. Pharmacoepidemiol. Drug Saf. 2012, 21, 1–8.
[49]  Olsson, S. The role of the WHO programme on International Drug Monitoring in coordinating worldwide drug safety efforts. Drug Saf. 1998, 19, 1–10, doi:10.2165/00002018-199819010-00001.
[50]  Asian Pharmacoepidemiology Network. Available online: http://aspennet.asia/index.html (accessed on 21 November 2012).
[51]  Blake, K.V.; Devries, C.S.; Arlett, P.; Kurz, X.; Fitt, H. Increasing scientific standards, independence and transparency in post-authorisation studies: The role of the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance. Pharmacoepidemiol. Drug Saf. 2012, 21, 690–696, doi:10.1002/pds.3281.
[52]  Stang, P.E.; Ryan, P.B.; Racoosin, J.A.; Overhage, J.M.; Hartzema, A.G.; Reich, C.; Welebob, E.; Scarnecchia, T.; Woodcock, J. Advancing the science for active surveillance: Rationale and design for the Observational Medical Outcomes Partnership. Ann. Intern. Med. 2010, 153, 600–606.
[53]  Coloma, P.M.; Schuemie, M.J.; Trifiro, G.; Gini, R.; Herings, R.; Hippisley-Cox, J.; Mazzaglia, G.; Giaquinto, C.; Corrao, G.; Pedersen, L.; et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol. Drug Saf. 2011, 20, 1–11, doi:10.1002/pds.2053.
[54]  Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium IMI-PROTECT. Available online: http://www.imi-protect.eu/ (accessed on 21 November 2012).

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133