全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Pharmaceutics  2013 

Development of a Novel Lipophilic, Magnetic Nanoparticle for in Vivo Drug Delivery

DOI: 10.3390/pharmaceutics5020246

Keywords: blood-brain barrier, endothelium, magnetofection, magnetic field, nanoparticle, transfection

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of the present study was to evaluate the transfection potential of chitosan-coated, green-fluorescent magnetic nanoparticles (MNPs) (chi-MNPs) after encapsulation inside polyethylglycol (PEG)ylated liposomes that produced lipid-encapsulated chitosan-coated MNPs (lip-MNPs), and also to evaluate how these particles would distribute in vivo after systemic injection. The transfection potential of both chi-MNPs and lip-MNPs was evaluated in vitro in rat brain endothelial 4 (RBE4) cells with and without applying a magnetic field. Subsequently, the MNPs were evaluated in vivo in young rats. The in vitro investigations revealed that the application of a magnetic field resulted in an increased cellular uptake of the particles. The lip-MNPs were able to transfect the RBE4 cells with an incidence of approximately 20% of a commercial transfection agent. The in vivo distribution studies revealed that lip-MNPs had superior pharmacokinetic properties due to evasion of the RES, including hepatic Kuppfer cells and macrophages in the spleen. In conclusion, we were able to design a novel lipid-encapsulated MNP with the ability to carry genetic material, with favorable pharmacokinetic properties, and under the influence of a magnetic field with the capability to mediate transfection in vitro.

References

[1]  Alexiou, C.; Jurgons, R.; Seliger, C.; Iro, H. Medical applications of magnetic nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 2762–2768, doi:10.1166/jnn.2006.464.
[2]  Ang, D.; Nguyen, Q.V.; Kayal, S.; Preiser, P.R.; Rawat, R.S.; Ramanujan, R.V. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomat. 2011, 7, 1319–1326, doi:10.1016/j.actbio.2010.09.037.
[3]  Chertok, B.; Moffat, B.A.; David, A.E.; Yu, F.; Bergemann, C.; Ross, B.D.; Yang, V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487–496, doi:10.1016/j.biomaterials.2007.08.050.
[4]  Chertok, B.; David, A.E.; Moffat, B.A.; Yang, V.C. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials 2009, 30, 6780–6787, doi:10.1016/j.biomaterials.2009.08.040.
[5]  Thomsen, L.B.; Lichota, J.; Eskehave, T.N.; Linemann, T.; Mortensen, J.H.; du Jardin, K.G.; Moos, T. Brain delivery systems via mechanism independent of receptor-mediated endocytosis and adsorptive-mediated endocytosis. Curr. Pharm. Biotech. 2012, 13, 2349–2354, doi:10.2174/138920112803341842.
[6]  Carrion, C.; Domingo, J.C.; de Madariaga, M.A. Preparation of long-circulating immunoliposomes using PEG-cholesterol conjugates: Effect of the spacer arm between PEG and cholesterol on liposomal characteristics. Chem. Phys. Lipids 2001, 113, 97–110, doi:10.1016/S0009-3084(01)00178-5.
[7]  Chonn, A.; Semple, S.C.; Cullis, P.R. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 1992, 267, 18759–18765.
[8]  Thomsen, L.B.; Lichota, J.; Kim, K.S.; Moos, T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J. Ctrl. Rel. 2011, 151, 45–50, doi:10.1016/j.jconrel.2011.01.002.
[9]  Kievit, F.M.; Veiseh, O.; Bhattarai, N.; Fang, C.; Gunn, J.W.; Lee, D.; Ellenbogen, R.G.; Olson, J.M.; Zhang, M. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, complexation, and transfection. Adv. Funct. Mater. 2009, 19, 2244–2251, doi:10.1002/adfm.200801844.
[10]  Pan, X.; Guan, J.; Yoo, J.W.; Epstein, A.J.; Lee, L.J.; Lee, R.J. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int. J. Pharm. 2008, 358, 263–270, doi:10.1016/j.ijpharm.2008.02.020.
[11]  Moos, T. Developmental profile of non-heme iron distribution in the rat brain during ontogenesis. Dev. Brain Res. 1995, 87, 203–213, doi:10.1016/0165-3806(95)00077-Q.
[12]  Hartig, S.M.; Greene, R.R.; Dasgupta, J.; Carlesso, G.; Dikov, M.M.; Prokop, A.; Davidson, J.M. Multifunctional nanoparticulate polyelectrolyte complexes. Pharm. Res. 2007, 24, 2353–2369, doi:10.1007/s11095-007-9459-1.
[13]  Senyei, A.; Widder, K.; Czerlinski, G. Magnetic Guidance of drug-carrying microspheres. J. Appl. Phys. 1978, 49, 3578–3584, doi:10.1063/1.325219.
[14]  Prow, T.; Smith, J.N.; Grebe, R.; Salazar, J.H.; Wang, N.; Kotov, N.; Lutty, G.; Leary, J. Construction, gene delivery, and expression of DNA tethered nanoparticles. Mol. Vis. 2006, 12, 606–615.
[15]  Pedroso De Lima, M.C.; Sim?es, S.; Pires, P.; Faneca, H.; Düzgünes, N. Cationic lipid-DNA complexes in gene delivery: From biophysics to biological applications. Adv. Drug Deliv. Rev. 2001, 47, 277–294, doi:10.1016/S0169-409X(01)00110-7.
[16]  Mykhaylyk, O.; Antequera, Y.S.; Vlaskou, D.; Plank, C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2007, 2, 2391–2411, doi:10.1038/nprot.2007.352.
[17]  Li, S.D.; Huang, L. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochim. Biophys. Acta 2009, 1788, 2259–2266, doi:10.1016/j.bbamem.2009.06.022.
[18]  Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 2010, 40, 385–403.
[19]  Gosk, S.; Vermehren, C.; Storm, G.; Moos, T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J. Cereb. Blood Flow Metab. 2004, 24, 1193–1204.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413