全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Protein Kinase C Inhibitors as Modulators of Vascular Function and Their Application in Vascular Disease

DOI: 10.3390/ph6030407

Keywords: calcium, endothelium, vascular smooth muscle, hypertension

Full-Text   Cite this paper   Add to My Lib

Abstract:

Blood pressure (BP) is regulated by multiple neuronal, hormonal, renal and vascular control mechanisms. Changes in signaling mechanisms in the endothelium, vascular smooth muscle (VSM) and extracellular matrix cause alterations in vascular tone and blood vessel remodeling and may lead to persistent increases in vascular resistance and hypertension (HTN). In VSM, activation of surface receptors by vasoconstrictor stimuli causes an increase in intracellular free Ca 2+ concentration ([Ca 2+] i), which forms a complex with calmodulin, activates myosin light chain (MLC) kinase and leads to MLC phosphorylation, actin-myosin interaction and VSM contraction. Vasoconstrictor agonists could also increase the production of diacylglycerol which activates protein kinase C (PKC). PKC is a family of Ca 2+-dependent and Ca 2+-independent isozymes that have different distributions in various blood vessels, and undergo translocation from the cytosol to the plasma membrane, cytoskeleton or the nucleus during cell activation. In VSM, PKC translocation to the cell surface may trigger a cascade of biochemical events leading to activation of mitogen-activated protein kinase (MAPK) and MAPK kinase (MEK), a pathway that ultimately increases the myofilament force sensitivity to [Ca 2+] i, and enhances actin-myosin interaction and VSM contraction. PKC translocation to the nucleus may induce transactivation of various genes and promote VSM growth and proliferation. PKC could also affect endothelium-derived relaxing and contracting factors as well as matrix metalloproteinases (MMPs) in the extracellular matrix further affecting vascular reactivity and remodeling. In addition to vasoactive factors, reactive oxygen species, inflammatory cytokines and other metabolic factors could affect PKC activity. Increased PKC expression and activity have been observed in vascular disease and in certain forms of experimental and human HTN. Targeting of vascular PKC using PKC inhibitors may function in concert with antioxidants, MMP inhibitors and cytokine antagonists to reduce VSM hyperactivity in certain forms of HTN that do not respond to Ca 2+ channel blockers.

References

[1]  Cardillo, C.; Kilcoyne, C.M.; Quyyumi, A.A.; Cannon, R.O., III; Panza, J.A. Selective defect in nitric oxide synthesis may explain the impaired endothelium-dependent vasodilation in patients with essential hypertension. Circulation 1998, 97, 851–856, doi:10.1161/01.CIR.97.9.851.
[2]  Heitzer, T.; Wenzel, U.; Hink, U.; Krollner, D.; Skatchkov, M.; Stahl, R.A.; MacHarzina, R.; Brasen, J.H.; Meinertz, T.; Munzel, T. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999, 55, 252–260, doi:10.1046/j.1523-1755.1999.00229.x.
[3]  Ungvari, Z.; Csiszar, A.; Huang, A.; Kaminski, P.M.; Wolin, M.S.; Koller, A. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase. Circulation 2003, 108, 1253–1258, doi:10.1161/01.CIR.0000079165.84309.4D.
[4]  Libby, P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006, 83, 456S–460S.
[5]  Nijm, J.; Wikby, A.; Tompa, A.; Olsson, A.G.; Jonasson, L. Circulating levels of proinflammatory cytokines and neutrophil-platelet aggregates in patients with coronary artery disease. Am. J. Cardiol. 2005, 95, 452–456, doi:10.1016/j.amjcard.2004.10.009.
[6]  McLachlan, C.S.; Chua, W.C.; Wong, P.T.; Kah, T.L.; Chen, C.; El Oakley, R.M. Homocysteine is positively associated with cytokine IL-18 plasma levels in coronary artery bypass surgery patients. Biofactors 2005, 23, 69–73.
[7]  Laviades, C.; Varo, N.; Fernandez, J.; Mayor, G.; Gil, M.J.; Monreal, I.; Diez, J. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 1998, 98, 535–540, doi:10.1161/01.CIR.98.6.535.
[8]  Ergul, A.; Portik-Dobos, V.; Hutchinson, J.; Franco, J.; Anstadt, M.P. Downregulation of vascular matrix metalloproteinase inducer and activator proteins in hypertensive patients. Am. J. Hypertens. 2004, 17, 775–782, doi:10.1016/j.amjhyper.2004.06.025.
[9]  Watts, S.W.; Rondelli, C.; Thakali, K.; Li, X.; Uhal, B.; Pervaiz, M.H.; Watson, R.E.; Fink, G.D. Morphological and biochemical characterization of remodeling in aorta and vena cava of DOCA-salt hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H2438–H2448, doi:10.1152/ajpheart.00900.2006.
[10]  Hussain, S.; Assender, J.W.; Bond, M.; Wong, L.F.; Murphy, D.; Newby, A.C. Activation of protein kinase Czeta is essential for cytokine-induced metalloproteinase-1, -3, and -9 secretion from rabbit smooth muscle cells and inhibits proliferation. J. Biol. Chem. 2002, 277, 27345–27352.
[11]  Park, M.J.; Park, I.C.; Lee, H.C.; Woo, S.H.; Lee, J.Y.; Hong, Y.J.; Rhee, C.H.; Lee, Y.S.; Lee, S.H.; Shim, B.S.; et al. Protein kinase C-alpha activation by phorbol ester induces secretion of gelatinase B/MMP-9 through ERK 1/2 pathway in capillary endothelial cells. Int. J. Oncol. 2003, 22, 137–143.
[12]  Mountain, D.J.; Singh, M.; Menon, B.; Singh, K. Interleukin-1beta increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: role of PKCalpha/beta1 and MAPKs. Am. J. Physiol. Cell. Physiol. 2007, 292, C867–C875, doi:10.1152/ajpcell.00161.2006.
[13]  Tsai, B.M.; Wang, M.; Pitcher, J.M.; Meldrum, K.K.; Meldrum, D.R. Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 287, L1215–L1219, doi:10.1152/ajplung.00179.2004.
[14]  Ramana, K.V.; Chandra, D.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase mediates the mitogenic signals of cytokines. Chem. Biol. Interact. 2003, 143–144, 587–596, doi:10.1016/S0009-2797(02)00194-1.
[15]  Ramana, K.V.; Tammali, R.; Reddy, A.B.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase-regulated tumor necrosis factor-alpha production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology 2007, 148, 4371–4384, doi:10.1210/en.2007-0512.
[16]  Somlyo, A.P.; Somlyo, A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatas. Physiol. Rev. 2003, 83, 1325–1358.
[17]  Khalil, R.A.; van Breemen, C. Sustained contraction of vascular smooth muscle: calcium influx or C-kinase activation? J. Pharmacol. Exp. Ther. 1988, 244, 537–542.
[18]  Horowitz, A.; Menice, C.B.; Laporte, R.; Morgan, K.G. Mechanisms of smooth muscle contraction. Physiol. Rev. 1996, 76, 967–1003.
[19]  Salamanca, D.A.; Khalil, R.A. Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension. Biochem. Pharmacol. 2005, 70, 1537–1547, doi:10.1016/j.bcp.2005.07.017.
[20]  Berridge, M.J.; Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984, 312, 315–321, doi:10.1038/312315a0.
[21]  Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992, 258, 607–614.
[22]  Morgan, K.G.; Khalil, R.A.; Suematsu, E.; Katsuyama, H. Calcium-dependent and calcium-independent pathways of signal transduction in smooth muscle. Jpn. J. Pharmacol. 1992, 58 (Suppl. 2), 47P–53P.
[23]  Nishimura, J.; Khalil, R.A.; van Breemen, C. Agonist-induced vascular tone. Hypertension 1989, 13, 835–844, doi:10.1161/01.HYP.13.6.835.
[24]  Jiang, M.J.; Morgan, K.G. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am. J. Physiol. 1987, 253, H1365–H1371.
[25]  Takai, Y.; Kishimoto, A.; Iwasa, Y.; Kawahara, Y.; Mori, T.; Nishizuka, Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J. Biol. Chem. 1979, 254, 3692–3695.
[26]  Newton, A.C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 1995, 270, 28495–28498, doi:10.1074/jbc.270.43.25526.
[27]  Klevit, R.E.; Herriott, J.R.; Horvath, S.J. Solution structure of a zinc finger domain of yeast ADR1. Proteins 1990, 7, 215–226, doi:10.1002/prot.340070303.
[28]  Coussens, L.; Parker, P.J.; Rhee, L.; Yang-Feng, T.L.; Chen, E.; Waterfield, M.D.; Francke, U.; Ullrich, A. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 1986, 233, 859–866.
[29]  Parker, C.A.; Takahashi, K.; Tao, T.; Morgan, K.G. Agonist-induced redistribution of calponin in contractile vascular smooth muscle cells. Am. J. Physiol. 1994, 267, C1262–C1270.
[30]  Ono, Y.; Fujii, T.; Ogita, K.; Kikkawa, U.; Igarashi, K.; Nishizuka, Y. Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties. Proc. Natl. Acad. Sci. USA 1989, 86, 3099–3103.
[31]  Ohno, S.; Konno, Y.; Akita, Y.; Yano, A.; Suzuki, K. A point mutation at the putative ATP-binding site of protein kinase C alpha abolishes the kinase activity and renders it down-regulation-insensitive. A molecular link between autophosphorylation and down-regulation. J. Biol. Chem. 1990, 265, 6296–6300.
[32]  Schaap, D.; Parker, P.J.; Bristol, A.; Kriz, R.; Knopf, J. Unique substrate specificity and regulatory properties of PKC-epsilon: a rationale for diversity. FEBS Lett. 1989, 243, 351–357, doi:10.1016/0014-5793(89)80160-7.
[33]  Osada, S.; Mizuno, K.; Saido, T.C.; Suzuki, K.; Kuroki, T.; Ohno, S. A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol. Cell. Biol. 1992, 12, 3930–3938.
[34]  Bacher, N.; Zisman, Y.; Berent, E.; Livneh, E. Isolation and characterization of PKC-L, a new member of the protein kinase C-related gene family specifically expressed in lung, skin, and heart. Mol. Cell. Biol. 1991, 11, 126–133.
[35]  Haller, H.; Quass, P.; Lindschau, C.; Luft, F.C.; Distler, A. Platelet-derived growth factor and angiotensin II induce different spatial distribution of protein kinase C-alpha and -beta in vascular smooth muscle cells. Hypertension 1994, 23, 848–852, doi:10.1161/01.HYP.23.6.848.
[36]  Singer, H.A. Phorbol ester-induced stress and myosin light chain phosphorylation in swine carotid medial smooth muscle. J. Pharmacol. Exp. Ther. 1990, 252, 1068–1074.
[37]  Ohanian, V.; Ohanian, J.; Shaw, L.; Scarth, S.; Parker, P.J.; Heagerty, A.M. Identification of protein kinase C isoforms in rat mesenteric small arteries and their possible role in agonist-induced contraction. Circ. Res. 1996, 78, 806–812, doi:10.1161/01.RES.78.5.806.
[38]  Kanashiro, C.A.; Altirkawi, K.A.; Khalil, R.A. Preconditioning of coronary artery against vasoconstriction by endothelin-1 and prostaglandin F2alpha during repeated downregulation of epsilon-protein kinase C. J. Cardiovasc. Pharmacol. 2000, 35, 491–501, doi:10.1097/00005344-200003000-00021.
[39]  Watanabe, M.; Hachiya, T.; Hagiwara, M.; Hidaka, H. Identification of type III protein kinase C in bovine aortic tissue. Arch. Biochem. Biophys. 1989, 273, 165–169.
[40]  Khalil, R.A.; Lajoie, C.; Morgan, K.G. In situ determination of [Ca2+]i threshold for translocation of the alpha-protein kinase C isoform. Am. J. Physiol. 1994, 266, C1544–C1551.
[41]  Liou, Y.M.; Morgan, K.G. Redistribution of protein kinase C isoforms in association with vascular hypertrophy of rat aorta. Am. J. Physiol. 1994, 267, C980–C989.
[42]  Khalil, R.A.; Lajoie, C.; Resnick, M.S.; Morgan, K.G. Ca(2+)-independent isoforms of protein kinase C differentially translocate in smooth muscle. Am. J. Physiol. 1992, 263, C714–C719.
[43]  Goodnight, J.A.; Mischak, H.; Kolch, W.; Mushinski, J.F. Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J. Biol. Chem. 1995, 270, 9991–10001.
[44]  Gailly, P.; Gong, M.C.; Somlyo, A.V.; Somlyo, A.P. Possible role of atypical protein kinase C activated by arachidonic acid in Ca2+ sensitization of rabbit smooth muscle. J. Physiol. 1997, 500, 95–109.
[45]  Makowske, M.; Rosen, O.M. Complete activation of protein kinase C by an antipeptide antibody directed against the pseudosubstrate prototope. J. Biol. Chem. 1989, 264, 16155–16159.
[46]  Orr, J.W.; Keranen, L.M.; Newton, A.C. Reversible exposure of the pseudosubstrate domain of protein kinase C by phosphatidylserine and diacylglycerol. J. Biol. Chem. 1992, 267, 15263–15266.
[47]  House, C.; Kemp, B.E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 1987, 238, 1726–1728.
[48]  Dekker, L.V.; McIntyre, P.; Parker, P.J. Mutagenesis of the regulatory domain of rat protein kinase C-eta. A molecular basis for restricted histone kinase activity. J. Biol. Chem. 1993, 268, 19498–19504.
[49]  Kanashiro, C.A.; Khalil, R.A. Signal transduction by protein kinase C in mammalian cells. Clin. Exp. Pharmacol. Physiol. 1998, 25, 974–985, doi:10.1111/j.1440-1681.1998.tb02170.x.
[50]  Wang, J.K.; Walaas, S.I.; Sihra, T.S.; Aderem, A.; Greengard, P. Phosphorylation and associated translocation of the 87-kDa protein, a major protein kinase C substrate, in isolated nerve terminals. Proc. Natl. Acad. Sci. USA 1989, 86, 2253–2256, doi:10.1073/pnas.86.7.2253.
[51]  Hartwig, J.H.; Thelen, M.; Rosen, A.; Janmey, P.A.; Nairn, A.C.; Aderem, A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 1992, 356, 618–622, doi:10.1038/356618a0.
[52]  Katada, T.; Gilman, A.G.; Watanabe, Y.; Bauer, S.; Jakobs, K.H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur. J. Biochem. 1985, 151, 431–437, doi:10.1111/j.1432-1033.1985.tb09120.x.
[53]  Barman, S.A.; Zhu, S.; White, R.E. Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286, L149–L155, doi:10.1152/ajplung.00207.2003.
[54]  Cogolludo, A.; Moreno, L.; Bosca, L.; Tamargo, J.; Perez-Vizcaino, F. Thromboxane A2-induced inhibition of voltage-gated K+ channels and pulmonary vasoconstriction: role of protein kinase Czeta. Circ. Res. 2003, 93, 656–663, doi:10.1161/01.RES.0000095245.97945.FE.
[55]  Limas, C.J. Phosphorylation of cardiac sarcoplasmic reticulum by a calcium-activated, phospholipid-dependent protein kinase. Biochem. Biophys. Res. Commun. 1980, 96, 1378–1383, doi:10.1016/0006-291X(80)90103-5.
[56]  Rosoff, P.M.; Stein, L.F.; Cantley, L.C. Phorbol esters induce differentiation in a pre-B-lymphocyte cell line by enhancing Na+/H+ exchange. J. Biol. Chem. 1984, 259, 7056–7060.
[57]  Aviv, A. Cytosolic Ca2+, Na+/H+ antiport, protein kinase C trio in essential hypertension. Am. J. Hypertens. 1994, 7, 205–212.
[58]  Schwienbacher, C.; Jockusch, B.M.; Rudiger, M. Intramolecular interactions regulate serine/threonine phosphorylation of vinculin. FEBS Lett. 1996, 384, 71–74, doi:10.1016/0014-5793(96)00286-4.
[59]  Woodsome, T.P.; Eto, M.; Everett, A.; Brautigan, D.L.; Kitazawa, T. Expression of CPI-17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C-induced contraction in rabbit smooth muscle. J. Physiol. 2001, 535, 553–564, doi:10.1111/j.1469-7793.2001.t01-1-00553.x.
[60]  Inagaki, M.; Yokokura, H.; Itoh, T.; Kanmura, Y.; Kuriyama, H.; Hidaka, H. Purified rabbit brain protein kinase C relaxes skinned vascular smooth muscle and phosphorylates myosin light chain. Arch. Biochem. Biophys. 1987, 254, 136–141, doi:10.1016/0003-9861(87)90089-0.
[61]  Newton, A.C. Regulation of protein kinase C. Curr. Opin. Cell. Biol. 1997, 9, 161–167, doi:10.1016/S0955-0674(97)80058-0.
[62]  Mochly-Rosen, D.; Gordon, A.S. Anchoring proteins for protein kinase C: A means for isozyme selectivity. FASEB J. 1998, 12, 35–42.
[63]  Kraft, A.S.; Anderson, W.B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 1983, 301, 621–623, doi:10.1038/301621a0.
[64]  Hyatt, S.L.; Klauck, T.; Jaken, S. Protein kinase C is localized in focal contacts of normal but not transformed fibroblasts. Mol. Carcinog. 1990, 3, 45–53, doi:10.1002/mc.2940030202.
[65]  Kose, A.; Saito, N.; Ito, H.; Kikkawa, U.; Nishizuka, Y.; Tanaka, C. Electron microscopic localization of type I protein kinase C in rat Purkinje cells. J. Neurosci. 1988, 8, 4262–4268.
[66]  Cogolludo, A.; Moreno, L.; Lodi, F.; Tamargo, J.; Perez-Vizcaino, F. Postnatal maturational shift from PKCzeta and voltage-gated K+ channels to RhoA/Rho kinase in pulmonary vasoconstriction. Cardiovasc. Res. 2005, 66, 84–93, doi:10.1016/j.cardiores.2004.12.019.
[67]  Draeger, A.; Wray, S.; Babiychuk, E.B. Domain architecture of the smooth-muscle plasma membrane: regulation by annexins. Biochem. J. 2005, 387, 309–314, doi:10.1042/BJ20041363.
[68]  Thelen, M.; Rosen, A.; Nairn, A.C.; Aderem, A. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature 1991, 351, 320–322, doi:10.1038/351320a0.
[69]  Cazaubon, S.M.; Parker, P.J. Identification of the phosphorylated region responsible for the permissive activation of protein kinase C. J. Biol. Chem. 1993, 268, 17559–17563.
[70]  Leventhal, P.S.; Bertics, P.J. Activation of protein kinase C by selective binding of arginine-rich polypeptides. J. Biol. Chem. 1993, 268, 13906–13913.
[71]  Ron, D.; Mochly-Rosen, D. Agonists and antagonists of protein kinase C function, derived from its binding proteins. J. Biol. Chem. 1994, 269, 21395–21398.
[72]  Housey, G.M.; Johnson, M.D.; Hsiao, W.L.; O'Brian, C.A.; Murphy, J.P.; Kirschmeier, P.; Weinstein, I.B. Overproduction of protein kinase C causes disordered growth control in rat fibroblasts. Cell 1988, 52, 343–354, doi:10.1016/S0092-8674(88)80027-8.
[73]  Dallas, A.; Khalil, R.A. Ca2+ antagonist-insensitive coronary smooth muscle contraction involves activation of epsilon-protein kinase C-dependent pathway. Am. J. Physiol. Cell. Physiol. 2003, 285, C1454–C1463.
[74]  Khalil, R.A.; Menice, C.B.; Wang, C.L.; Morgan, K.G. Phosphotyrosine-dependent targeting of mitogen-activated protein kinase in differentiated contractile vascular cells. Circ. Res. 1995, 76, 1101–1108, doi:10.1161/01.RES.76.6.1101.
[75]  Mii, S.; Khalil, R.A.; Morgan, K.G.; Ware, J.A.; Kent, K.C. Mitogen-activated protein kinase and proliferation of human vascular smooth muscle cells. Am. J. Physiol. 1996, 270, H142–H150.
[76]  Adam, L.P.; Gapinski, C.J.; Hathaway, D.R. Phosphorylation sequences in h-caldesmon from phorbol ester-stimulated canine aortas. FEBS Lett. 1992, 302, 223–226, doi:10.1016/0014-5793(92)80446-N.
[77]  D’Angelo, G.; Graceffa, P.; Wang, C.A.; Wrangle, J.; Adam, L.P. Mammal-specific, ERK-dependent, caldesmon phosphorylation in smooth muscle. Quantitation using novel anti-phosphopeptide antibodies. J. Biol. Chem. 1999, 274, 30115–30121.
[78]  Hedges, J.C.; Oxhorn, B.C.; Carty, M.; Adam, L.P.; Yamboliev, I.A.; Gerthoffer, W.T. Phosphorylation of caldesmon by ERK MAP kinases in smooth muscle. Am. J. Physiol. Cell. Physiol. 2000, 278, C718–C726.
[79]  Bazzi, M.D.; Nelsestuen, G.L. Protein kinase C interaction with calcium: A phospholipid-dependent process. Biochemistry 1990, 29, 7624–7630, doi:10.1021/bi00485a012.
[80]  Nishizuka, Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995, 9, 484–496.
[81]  Szallasi, Z.; Smith, C.B.; Pettit, G.R.; Blumberg, P.M. Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. J. Biol. Chem. 1994, 269, 2118–2124.
[82]  Giardina, J.B.; Tanner, D.J.; Khalil, R.A. Oxidized-LDL enhances coronary vasoconstriction by increasing the activity of protein kinase C isoforms alpha and epsilon. Hypertension 2001, 37, 561–568, doi:10.1161/01.HYP.37.2.561.
[83]  Claro, S.; Kanashiro, C.A.; Oshiro, M.E.; Ferreira, A.T.; Khalil, R.A. alpha- and epsilon-protein kinase C activity during smooth muscle cell apoptosis in response to gamma-radiation. J. Pharmacol. Exp. Ther. 2007, 322, 964–972, doi:10.1124/jpet.107.125930.
[84]  Li, W.; Zhang, J.; Bottaro, D.P.; Pierce, J.H. Identification of serine 643 of protein kinase C-delta as an important autophosphorylation site for its enzymatic activity. J. Biol. Chem. 1997, 272, 24550–24555.
[85]  Keranen, L.M.; Dutil, E.M.; Newton, A.C. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr. Biol. 1995, 5, 1394–1403, doi:10.1016/S0960-9822(95)00277-6.
[86]  Edwards, A.S.; Newton, A.C. Phosphorylation at conserved carboxyl-terminal hydrophobic motif regulates the catalytic and regulatory domains of protein kinase C. J. Biol. Chem. 1997, 272, 18382–18390, doi:10.1074/jbc.272.29.18382.
[87]  Eichholtz, T.; de Bont, D.B.; de Widt, J.; Liskamp, R.M.; Ploegh, H.L. A myristoylated pseudosubstrate peptide, a novel protein kinase C inhibitor. J. Biol. Chem. 1993, 268, 1982–1986.
[88]  Clement, S.; Tasinato, A.; Boscoboinik, D.; Azzi, A. The effect of alpha-tocopherol on the synthesis, phosphorylation and activity of protein kinase C in smooth muscle cells after phorbol 12-myristate 13-acetate down-regulation. Eur. J. Biochem. 1997, 246, 745–749.
[89]  Cain, A.E.; Khalil, R.A. Pathophysiology of essential hypertension: role of the pump, the vessel, and the kidney. Semin. Nephrol. 2002, 22, 3–16.
[90]  Wang, S.; Desai, D.; Wright, G.; Niles, R.M.; Wright, G.L. Effects of protein kinase C alpha overexpression on A7r5 smooth muscle cell proliferation and differentiation. Exp. Cell. Res. 1997, 236, 117–126, doi:10.1006/excr.1997.3714.
[91]  Deng, Z.; Morse, J.H.; Slager, S.L.; Cuervo, N.; Moore, K.J.; Venetos, G.; Kalachikov, S.; Cayanis, E.; Fischer, S.G.; Barst, R.J.; Hodge, S.E.; Knowles, J.A. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 2000, 67, 737–744, doi:10.1086/303059.
[92]  Machado, R.D.; Pauciulo, M.W.; Thomson, J.R.; Lane, K.B.; Morgan, N.V.; Wheeler, L.; Phillips, J.A., III; Newman, J.; Williams, D.; Galie, N.; et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 2001, 68, 92–102, doi:10.1086/316947.
[93]  Aldred, M.A.; Vijayakrishnan, J.; James, V.; Soubrier, F.; Gomez-Sanchez, M.A.; Martensson, G.; Galie, N.; Manes, A.; Corris, P.; Simonneau, G.; et al. MPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Hum. Mutat. 2006, 27, 212–213.
[94]  Song, Y.; Jones, J.E.; Beppu, H.; Keaney, J.F., Jr.; Loscalzo, J.; Zhang, Y.Y. Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 2005, 112, 553–562, doi:10.1161/CIRCULATIONAHA.104.492488.
[95]  Hassel, S.; Eichner, A.; Yakymovych, M.; Hellman, U.; Knaus, P.; Souchelnytskyi, S. Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4, 1346–1358, doi:10.1002/pmic.200300770.
[96]  Shibata, R.; Morita, S.; Nagai, K.; Miyata, S.; Iwasaki, T. Effects of H-7 (protein kinase inhibitor) and phorbol ester on aortic strips from spontaneously hypertensive rats. Eur. J. Pharmacol. 1990, 175, 261–271, doi:10.1016/0014-2999(90)90563-L.
[97]  Bazan, E.; Campbell, A.K.; Rapoport, R.M. Protein kinase C activity in blood vessels from normotensive and spontaneously hypertensive rats. Eur. J. Pharmacol. 1992, 227, 343–348, doi:10.1016/0922-4106(92)90014-M.
[98]  Sauro, M.D.; Hadden, J.W. Gamma-interferon corrects aberrant protein kinase C levels and immunosuppression in the spontaneously hypertensive rat. Int. J. Immunopharmacol. 1992, 14, 1421–1427, doi:10.1016/0192-0561(92)90014-C.
[99]  Sasajima, H.; Shima, H.; Toyoda, Y.; Kimura, K.; Yoshikawa, A.; Hano, T.; Nishio, I. Increased Ca2+ sensitivity of contractile elements via protein kinase C in alpha-toxin permeabilized SMA from young spontaneously hypertensive rats. Cardiovasc. Res. 1997, 36, 86–91, doi:10.1016/S0008-6363(97)00131-4.
[100]  Rosen, B.; Barg, J.; Zimlichman, R. The effects of angiotensin II, endothelin-1, and protein kinase C inhibitor on DNA synthesis and intracellular calcium mobilization in vascular smooth muscle cells from young normotensive and spontaneously hypertensive rats. Am. J. Hypertens. 1999, 12, 1243–1251, doi:10.1016/S0895-7061(99)00158-2.
[101]  Bilder, G.E.; Kasiewski, C.J.; Perrone, M.H. Phorbol-12,13-dibutyrate-induced vasoconstriction in vivo: characterization of response in genetic hypertension. J. Pharmacol. Exp. Ther. 1990, 252, 526–530.
[102]  Kanashiro, C.A.; Khalil, R.A. Gender-related distinctions in protein kinase C activity in rat vascular smooth muscle. Am. J. Physiol. Cell. Physiol. 2001, 280, C34–C45.
[103]  Touyz, R.M.; Schiffrin, E.L. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J. Hypertens. 2001, 19, 1245–1254, doi:10.1097/00004872-200107000-00009.
[104]  Escriba, P.V.; Sanchez-Dominguez, J.M.; Alemany, R.; Perona, J.S.; Ruiz-Gutierrez, V. Alteration of lipids, G proteins, and PKC in cell membranes of elderly hypertensives. Hypertension 2003, 41, 176–182, doi:10.1161/01.HYP.0000047647.72162.A8.
[105]  Gu, X.; Bishop, S.P. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ. Res. 1994, 75, 926–931, doi:10.1161/01.RES.75.5.926.
[106]  Fatehi-Hassanabad, Z.; Fatehi, M.; Shahidi, M.I. Endothelial dysfunction in aortic rings and mesenteric beds isolated from deoxycorticosterone acetate hypertensive rats: Possible involvement of protein kinase C. Eur. J. Pharmacol. 2004, 494, 199–204, doi:10.1016/j.ejphar.2004.05.012.
[107]  Soloviev, A.I.; Parshikov, A.V.; Stefanov, A.V. Evidence for the involvement of protein kinase C in depression of endothelium-dependent vascular responses in spontaneously hypertensive rats. J. Vasc. Res. 1998, 35, 325–331, doi:10.1159/000025602.
[108]  Huang, P.L.; Huang, Z.; Mashimo, H.; Bloch, K.D.; Moskowitz, M.A.; Bevan, J.A.; Fishman, M.C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995, 377, 239–242.
[109]  Michell, B.J.; Chen, Z.; Tiganis, T.; Stapleton, D.; Katsis, F.; Power, D.A.; Sim, A.T.; Kemp, B.E. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J. Biol. Chem. 2001, 276, 17625–17628.
[110]  Fleming, I.; Fisslthaler, B.; Dimmeler, S.; Kemp, B.E.; Busse, R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ. Res. 2001, 88, E68–E75, doi:10.1161/hh1101.092677.
[111]  Motley, E.D.; Eguchi, K.; Patterson, M.M.; Palmer, P.D.; Suzuki, H.; Eguchi, S. Mechanism of endothelial nitric oxide synthase phosphorylation and activation by thrombin. Hypertension 2007, 49, 577–583, doi:10.1161/01.HYP.0000255954.80025.34.
[112]  Partovian, C.; Zhuang, Z.; Moodie, K.; Lin, M.; Ouchi, N.; Sessa, W.C.; Walsh, K.; Simons, M. PKCalpha activates eNOS and increases arterial blood flow in vivo. Circ. Res. 2005, 97, 482–487, doi:10.1161/01.RES.0000179775.04114.45.
[113]  Vasquez-Vivar, J.; Kalyanaraman, B.; Martasek, P.; Hogg, N.; Masters, B.S.; Karoui, H.; Tordo, P.; Pritchard, K.A., Jr. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proc. Natl. Acad. Sci. USA 1998, 95, 9220–9225, doi:10.1073/pnas.95.16.9220.
[114]  Xia, Y.; Tsai, A.L.; Berka, V.; Zweier, J.L. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J. Biol. Chem. 1998, 273, 25804–25808, doi:10.1074/jbc.273.40.25804.
[115]  Li, H.; Witte, K.; August, M.; Brausch, I.; Godtel-Armbrust, U.; Habermeier, A.; Closs, E.I.; Oelze, M.; Munzel, T.; Forstermann, U. Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J. Am. Coll. Cardiol. 2006, 47, 2536–2544, doi:10.1016/j.jacc.2006.01.071.
[116]  Dai, X.; Cao, X.; Kreulen, D.L. Superoxide anion is elevated in sympathetic neurons in DOCA-salt hypertension via activation of NADPH oxidase. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H1019–H1026.
[117]  Fedorova, O.V.; Talan, M.I.; Agalakova, N.I.; Droy-Lefaix, M.T.; Lakatta, E.G.; Bagrov, A.Y. Myocardial PKC beta2 and the sensitivity of Na/K-ATPase to marinobufagenin are reduced by cicletanine in Dahl hypertension. Hypertension 2003, 41, 505–511, doi:10.1161/01.HYP.0000053446.43894.9F.
[118]  Galis, Z.S.; Khatri, J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 2002, 90, 251–262.
[119]  Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 2003, 92, 827–839, doi:10.1161/01.RES.0000070112.80711.3D.
[120]  Benjamin, M.M.; Khalil, R.A. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Experientia. Supplementum. 2012, 103, 209–279, doi:10.1007/978-3-0348-0364-9_7.
[121]  Chew, D.K.; Conte, M.S.; Khalil, R.A. Matrix metalloproteinase-specific inhibition of Ca2+ entry mechanisms of vascular contraction. J. Vasc. Surg. 2004, 40, 1001–1010, doi:10.1016/j.jvs.2004.08.035.
[122]  Raffetto, J.D.; Ross, R.L.; Khalil, R.A. Matrix metalloproteinase 2-induced venous dilation via hyperpolarization and activation of K+ channels: Relevance to varicose vein formation. J. Vasc. Surg. 2007, 45, 373–380, doi:10.1016/j.jvs.2006.10.041.
[123]  Derosa, G.; D’Angelo, A.; Ciccarelli, L.; Piccinni, M.N.; Pricolo, F.; Salvadeo, S.; Montagna, L.; Gravina, A.; Ferrari, I.; Galli, S.; et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium 2006, 13, 227–231, doi:10.1080/10623320600780942.
[124]  Zervoudaki, A.; Economou, E.; Stefanadis, C.; Pitsavos, C.; Tsioufis, K.; Aggeli, C.; Vasiliadou, K.; Toutouza, M.; Toutouzas, P. Plasma levels of active extracellular matrix metalloproteinases 2 and 9 in patients with essential hypertension before and after antihypertensive treatment. J. Hum. Hypertens. 2003, 17, 119–124, doi:10.1038/sj.jhh.1001518.
[125]  Flamant, M.; Placier, S.; Dubroca, C.; Esposito, B.; Lopes, I.; Chatziantoniou, C.; Tedgui, A.; Dussaule, J.C.; Lehoux, S. Role of matrix metalloproteinases in early hypertensive vascular remodeling. Hypertension 2007, 50, 212–218, doi:10.1161/HYPERTENSIONAHA.107.089631.
[126]  Papadimitriou, E.; Waters, C.R.; Manolopoulos, V.G.; Unsworth, B.R.; Maragoudakis, M.E.; Lelkes, P.I. Regulation of extracellular matrix remodeling and MMP-2 activation in cultured rat adrenal medullary endothelial cells. Endothelium 2001, 8, 243–253.
[127]  Li, D.; Liu, L.; Chen, H.; Sawamura, T.; Ranganathan, S.; Mehta, J.L. LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells. Circulation 2003, 107, 612–617, doi:10.1161/01.CIR.0000047276.52039.FB.
[128]  Smith, L.; Payne, J.A.; Sedeek, M.H.; Granger, J.P.; Khalil, R.A. Endothelin-induced increases in Ca2+ entry mechanisms of vascular contraction are enhanced during high-salt diet. Hypertension 2003, 41, 787–793, doi:10.1161/01.HYP.0000051643.05700.56.
[129]  Khalil, R.A. Dietary salt and hypertension: new molecular targets add more spice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R509–R513, doi:10.1152/ajpregu.00600.2005.
[130]  Fareh, J.; Touyz, R.M.; Schiffrin, E.L.; Thibault, G. Altered cardiac endothelin receptors and protein kinase C in deoxycorticosterone-salt hypertensive rats. J. Mol. Cell. Cardiol. 2000, 32, 665–676, doi:10.1006/jmcc.2000.1110.
[131]  Kim, J.; Lee, Y.R.; Lee, C.H.; Choi, W.H.; Lee, C.K.; Bae, Y.M.; Cho, S.; Kim, B. Mitogen-activated protein kinase contributes to elevated basal tone in aortic smooth muscle from hypertensive rats. Eur. J. Pharmacol. 2005, 514, 209–215, doi:10.1016/j.ejphar.2005.03.030.
[132]  Sirous, Z.N.; Fleming, J.B.; Khalil, R.A. Endothelin-1 enhances eicosanoids-induced coronary smooth muscle contraction by activating specific protein kinase C isoforms. Hypertension 2001, 37, 497–504, doi:10.1161/01.HYP.37.2.497.
[133]  Cain, A.E.; Tanner, D.M.; Khalil, R.A. Endothelin-1--induced enhancement of coronary smooth muscle contraction via MAPK-dependent and MAPK-independent [Ca(2+)](i) sensitization pathways. Hypertension 2002, 39, 543–549, doi:10.1161/hy0202.103129.
[134]  Khalil, R.A. Modulators of the vascular endothelin receptor in blood pressure regulation and hypertension. Curr. Mol. Pharmacol. 2011, 4, 176–186.
[135]  Schiffrin, E.L. Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension 1995, 25, 1135–1143, doi:10.1161/01.HYP.25.6.1135.
[136]  Kanayama, Y.; Negoro, N.; Okamura, M.; Konishi, Y.; Nishimura, M.; Umetani, N.; Inoue, T.; Takeda, T. Modulation of protein kinase C in aorta of spontaneously hypertensive rats with enalapril treatment. Osaka City Med. J. 1994, 40, 83–97.
[137]  Bell, P.D.; Mashburn, N.; Unlap, M.T. Renal sodium/calcium exchange; a vasodilator that is defective in salt-sensitive hypertension. Acta. Physiol. Scand. 2000, 168, 209–214, doi:10.1046/j.1365-201x.2000.00671.x.
[138]  Nowicki, S.; Kruse, M.S.; Brismar, H.; Aperia, A. Dopamine-induced translocation of protein kinase C isoforms visualized in renal epithelial cells. Am. J. Physiol. Cell. Physiol. 2000, 279, C1812–C1818.
[139]  Ridge, K.M.; Dada, L.; Lecuona, E.; Bertorello, A.M.; Katz, A.I.; Mochly-Rosen, D.; Sznajder, J.I. Dopamine-induced exocytosis of Na,K-ATPase is dependent on activation of protein kinase C-epsilon and -delta. Mol. Biol. Cell. 2002, 13, 1381–1389, doi:10.1091/mbc.01-07-0323.
[140]  Banday, A.A.; Fazili, F.R.; Lokhandwala, M.F. Oxidative stress causes renal dopamine D1 receptor dysfunction and hypertension via mechanisms that involve nuclear factor-kappaB and protein kinase C. J. Am. Soc. Nephrol. 2007, 18, 1446–1457, doi:10.1681/ASN.2006121373.
[141]  Hughes-Darden, C.A.; Wachira, S.J.; Denaro, F.J.; Taylor, C.V.; Brunson, K.J.; Ochillo, R.; Robinson, T.J. Expression and distribution of protein kinase C isozymes in brain tissue of spontaneous hypertensive rats. Cell. Mol. Biol. (Noisy-le-grand) 2001, 47, 1077–1088.
[142]  Rao, F.; Zhang, L.; Wessel, J.; Zhang, K.; Wen, G.; Kennedy, B.P.; Rana, B.K.; Das, M.; Rodriguez-Flores, J.L.; Smith, D.W.; et al. Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo. Circulation 2007, 116, 993–1006, doi:10.1161/CIRCULATIONAHA.106.682302.
[143]  Hempel, A.; Maasch, C.; Heintze, U.; Lindschau, C.; Dietz, R.; Luft, F.C.; Haller, H. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ. Res. 1997, 81, 363–371, doi:10.1161/01.RES.81.3.363.
[144]  Williams, B.; Howard, R.L. Glucose-induced changes in Na+/H+ antiport activity and gene expression in cultured vascular smooth muscle cells. Role of protein kinase C. J. Clin. Invest. 1994, 93, 2623–2631, doi:10.1172/JCI117275.
[145]  Farese, R.V.; Standaert, M.L.; Ishizuka, T.; Yu, B.; Hernandez, H.; Waldron, C.; Watson, J.; Farese, J.P.; Cooper, D.R.; Wickstrom, E. Antisense DNA downregulates protein kinase C isozymes (beta and alpha) and insulin-stimulated 2-deoxyglucose uptake in rat adipocytes. Antisense Res. Dev. 1991, 1, 35–42.
[146]  Ishii, H.; Jirousek, M.R.; Koya, D.; Takagi, C.; Xia, P.; Clermont, A.; Bursell, S.E.; Kern, T.S.; Ballas, L.M.; Heath, W.F.; et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996, 272, 728–731.
[147]  Young, J.L.; Libby, P.; Schonbeck, U. Cytokines in the pathogenesis of atherosclerosis. Thromb. Haemost. 2002, 88, 554–567.
[148]  Waehre, T.; Yndestad, A.; Smith, C.; Haug, T.; Tunheim, S.H.; Gullestad, L.; Froland, S.S.; Semb, A.G.; Aukrust, P.; Damas, J.K. Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation 2004, 109, 1966–1972, doi:10.1161/01.CIR.0000125700.33637.B1.
[149]  Sardella, G.; Mariani, P.; D’Alessandro, M.; De Luca, L.; Pierro, M.; Mancone, M.; Porretta, A.; Accapezzato, D.; Fedele, F.; Paroli, M. Early elevation of interleukin-1beta and interleukin-6 levels after bare or drug-eluting stent implantation in patients with stable angina. Thromb. Res. 2006, 117, 659–664, doi:10.1016/j.thromres.2005.06.002.
[150]  Lubrano, V.; Cocci, F.; Battaglia, D.; Papa, A.; Marraccini, P.; Zucchelli, G.C. Usefulness of high-sensitivity IL-6 measurement for clinical characterization of patients with coronary artery disease. J. Clin. Lab. Anal. 2005, 19, 110–114, doi:10.1002/jcla.20061.
[151]  Funayama, H.; Ishikawa, S.E.; Kubo, N.; Katayama, T.; Yasu, T.; Saito, M.; Kawakami, M. Increases in interleukin-6 and matrix metalloproteinase-9 in the infarct-related coronary artery of acute myocardial infarction. Circ. J. 2004, 68, 451–454, doi:10.1253/circj.68.451.
[152]  Lee, D.L.; Sturgis, L.C.; Labazi, H.; Osborne, J.B., Jr.; Fleming, C.; Pollock, J.S.; Manhiani, M.; Imig, J.D.; Brands, M.W. Angiotensin II hypertension is attenuated in interleukin-6 knockout mice. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H935–H940.
[153]  Das, M.; Dempsey, E.C.; Bouchey, D.; Reyland, M.E.; Stenmark, K.R. Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts: potential contribution of specific protein kinase c isozymes. Am. J. Respir. Cell. Mol. Biol. 2000, 22, 15–25.
[154]  Littler, C.M.; Morris, K.G., Jr.; Fagan, K.A.; McMurtry, I.F.; Messing, R.O.; Dempsey, E.C. Protein kinase C-epsilon-null mice have decreased hypoxic pulmonary vasoconstriction. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1321–H1331.
[155]  Ito, T.; Ozawa, K.; Shimada, K. Current drug targets and future therapy of pulmonary arterial hypertension. Curr. Med. Chem. 2007, 14, 719–733, doi:10.2174/092986707780059562.
[156]  Puri, A.; McGoon, M.D.; Kushwaha, S.S. Pulmonary arterial hypertension: current therapeutic strategies. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4, 319–329, doi:10.1038/ncpcardio0890.
[157]  Barman, S.A. Vasoconstrictor effect of endothelin-1 on hypertensive pulmonary arterial smooth muscle involves Rho-kinase and protein kinase C. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L472–L479, doi:10.1152/ajplung.00101.2006.
[158]  Khalil, R.A.; Granger, J.P. Vascular mechanisms of increased arterial pressure in preeclampsia: Lessons from animal models. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R29–R45.
[159]  Sheppard, S.J.; Khalil, R.A. Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc. Hematol. Disord. Drug Targets 2010, 10, 33–52, doi:10.2174/187152910790780096.
[160]  Magness, R.R.; Rosenfeld, C.R.; Carr, B.R. Protein kinase C in uterine and systemic arteries during ovarian cycle and pregnancy. Am. J. Physiol. 1991, 260, E464–E470.
[161]  Kanashiro, C.A.; Cockrell, K.L.; Alexander, B.T.; Granger, J.P.; Khalil, R.A. Pregnancy-associated reduction in vascular protein kinase C activity rebounds during inhibition of NO synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R295–R303.
[162]  Kanashiro, C.A.; Alexander, B.T.; Granger, J.P.; Khalil, R.A. Ca(2+)-insensitive vascular protein kinase C during pregnancy and NOS inhibition. Hypertension 1999, 34, 924–930, doi:10.1161/01.HYP.34.4.924.
[163]  Khalil, R.A.; Crews, J.K.; Novak, J.; Kassab, S.; Granger, J.P. Enhanced vascular reactivity during inhibition of nitric oxide synthesis in pregnant rats. Hypertension 1998, 31, 1065–1069, doi:10.1161/01.HYP.31.5.1065.
[164]  Crews, J.K.; Novak, J.; Granger, J.P.; Khalil, R.A. Stimulated mechanisms of Ca2+ entry into vascular smooth muscle during NO synthesis inhibition in pregnant rats. Am. J. Physiol. 1999, 276, R530–R538.
[165]  Wallukat, G.; Homuth, V.; Fischer, T.; Lindschau, C.; Horstkamp, B.; Jupner, A.; Baur, E.; Nissen, E.; Vetter, K.; Neichel, D.; et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 1999, 103, 945–952, doi:10.1172/JCI4106.
[166]  Kupferminc, M.J.; Peaceman, A.M.; Wigton, T.R.; Rehnberg, K.A.; Socol, M.L. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am. J. Obstet. Gynecol. 1994, 170, 1752–1757, discussion 1757–1759.
[167]  Vince, G.S.; Starkey, P.M.; Austgulen, R.; Kwiatkowski, D.; Redman, C.W. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br. J. Obstet. Gynaecol. 1995, 102, 20–25, doi:10.1111/j.1471-0528.1995.tb09020.x.
[168]  Conrad, K.P.; Benyo, D.F. Placental cytokines and the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 1997, 37, 240–249, doi:10.1111/j.1600-0897.1997.tb00222.x.
[169]  Williams, M.A.; Mahomed, K.; Farrand, A.; Woelk, G.B.; Mudzamiri, S.; Madzime, S.; King, I.B.; McDonald, G.B. Plasma tumor necrosis factor-alpha soluble receptor p55 (sTNFp55) concentrations in eclamptic, preeclamptic and normotensive pregnant Zimbabwean women. J. Reprod. Immunol. 1998, 40, 159–173, doi:10.1016/S0165-0378(98)00074-6.
[170]  LaMarca, B.D.; Ryan, M.J.; Gilbert, J.S.; Murphy, S.R.; Granger, J.P. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr. Hypertens. Rep. 2007, 9, 480–485, doi:10.1007/s11906-007-0088-1.
[171]  Benyo, D.F.; Smarason, A.; Redman, C.W.; Sims, C.; Conrad, K.P. Expression of inflammatory cytokines in placentas from women with preeclampsia. J. Clin. Endocrinol. Metab. 2001, 86, 2505–2512, doi:10.1210/jc.86.6.2505.
[172]  Davis, J.R.; Giardina, J.B.; Green, G.M.; Alexander, B.T.; Granger, J.P.; Khalil, R.A. Reduced endothelial NO-cGMP vascular relaxation pathway during TNF-alpha-induced hypertension in pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R390–R399.
[173]  Orshal, J.M.; Khalil, R.A. Reduced endothelial NO-cGMP-mediated vascular relaxation and hypertension in IL-6-infused pregnant rats. Hypertension 2004, 43, 434–444, doi:10.1161/01.HYP.0000113044.46326.98.
[174]  Giardina, J.B.; Green, G.M.; Cockrell, K.L.; Granger, J.P.; Khalil, R.A. TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R130–R143.
[175]  Orshal, J.M.; Khalil, R.A. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R1013–R1023, doi:10.1152/ajpregu.00729.2003.
[176]  Gilbert, J.S.; Babcock, S.A.; Granger, J.P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension 2007, 50, 1142–1147, doi:10.1161/HYPERTENSIONAHA.107.096594.
[177]  Gilbert, J.S.; Gilbert, S.A.; Arany, M.; Granger, J.P. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension 2009, 53, 399–403.
[178]  Bagrov, A.Y.; Dmitrieva, R.I.; Dorofeeva, N.A.; Fedorova, O.V.; Lopatin, D.A.; Lakatta, E.G.; Droy-Lefaix, M.T. Cicletanine reverses vasoconstriction induced by the endogenous sodium pump ligand, marinobufagenin, via a protein kinase C dependent mechanis. J. Hypertens. 2000, 18, 209–215, doi:10.1097/00004872-200018020-00012.
[179]  Seko, T.; Ito, M.; Kureishi, Y.; Okamoto, R.; Moriki, N.; Onishi, K.; Isaka, N.; Hartshorne, D.J.; Nakano, T. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ. Res. 2003, 92, 411–418, doi:10.1161/01.RES.0000059987.90200.44.
[180]  McCarty, M.F. Up-regulation of intracellular signalling pathways may play a central pathogenic role in hypertension, atherogenesis, insulin resistance, and cancer promotion—The “PKC syndrome”. Med. Hypotheses 1996, 46, 191–221, doi:10.1016/S0306-9877(96)90243-1.
[181]  Davis, M.D.; Sheetz, M.J.; Aiello, L.P.; Milton, R.C.; Danis, R.P.; Zhi, X.; Girach, A.; Jimenez, M.C.; Vignati, L. Effect of ruboxistaurin on the visual acuity decline associated with long-standing diabetic macular edema. Invest. Ophthalmol. Vis. Sci. 2009, 50, 1–4.
[182]  Aiello, L.P.; Vignati, L.; Sheetz, M.J.; Zhi, X.; Girach, A.; Davis, M.D.; Wolka, A.M.; Shahri, N.; Milton, R.C. Oral protein kinase C beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the protein kinase C beta inhibitor-diabetic retinopathy study and the protein kinase C beta inhibitor-diabetic retinopathy study 2. Retina 2011, 31, 2084–2094, doi:10.1097/IAE.0b013e3182111669.
[183]  Joy, S.V.; Scates, A.C.; Bearelly, S.; Dar, M.; Taulien, C.A.; Goebel, J.A.; Cooney, M.J. Ruboxistaurin, a protein kinase C beta inhibitor, as an emerging treatment for diabetes microvascular complications. Ann. Pharmacother. 2005, 39, 1693–1699, doi:10.1345/aph.1E572.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133