全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stability-Indicating RP-TLC/Densitometry Determination of Raloxifene Hydrochloride in Bulk Material and in Tablets

DOI: 10.1155/2012/356216

Full-Text   Cite this paper   Add to My Lib

Abstract:

A stability-indicating RP-TLC/Densitometry method for analysis of Raloxifene hydrochloride both in bulk material and in tablets was developed and validated. Densitometric analysis of Raloxifene hydrochloride was carried out at 311?nm on TLC aluminium plates precoated with silica gel 60RP-18 S as the stationary phase and methanol?:?water?:?ammonia (95?:?05?:?0.1 ) as mobile phase. Raloxifene hydrochloride was well resolved at 0.55 ± 0.02. The linear regression analysis data for the calibration plots showed good linear relationship with with respect to peak area in the concentration range 100–600?ng per band. The mean value ± SD of slope and intercept was found to be and with respect to peak area. The limits of detection and quantification were 9.27?ng and 27.10?ng, respectively. Raloxifene hydrochloride was subjected to acid and alkali hydrolysis, oxidation, dry heat, and photodegradation. The drug underwent degradation under basic and oxidation conditions. This indicates that the drug is susceptible to alkali hydrolysis and oxidation. The proposed developed RP-TLC/Densitometry method can be applied for identification and quantitative determination of Raloxifene hydrochloride in bulk material and tablets. 1. Introduction Raloxifene hydrochloride (RLX), [6-Hydroxy-2-(4-hydroxy-phenyl) benzo [b] thien-3-yl] [4-[2-(1-piperidinyl)-ethoxy] phenyl]-methanone-, hydrochloride (Figure 1) is a selective estrogen receptor modulator (SERM) used in the treatment of osteoporosis in postmenopausal women [1]. Clinically, it is effective in the treatment of breast cancer [2, 3]. Figure 1: Chemical structure of Raloxifene hydrochloride (RLX). Literature survey revealed that RLX was analyzed by HPLC [4–9], Stability-indicating UPLC [10], and several UV-spectrophotometric [11–14] in pharmaceutical formulations. Few methods such as LC-MS-MS [15] and HPLC [16] have been reported for estimation of RLX in biological samples. Although the RP-HPLC and UPLC procedures are accurate and effective means of assaying RLX, they are time and solvent consuming, and therefore, disadvantageous for serial estimation for a large number of samples [17]. However, the prominent application of HPTLC is that many samples can be run simultaneously using a small quantity of mobile phase unlike HPLC, thus reducing the analysis time and cost per analysis. In-reverse phase chromatography, polar mobile phase is used and the stationary phase is nonpolar. It is increasingly being experienced that different components of formulation which could not be resolved using normal-phase TLC could easily be

References

[1]  A. Smith, P. E. Heckelman, J. R. Obenchain, J. A. R. Gallipeau, M. A. D'Arecca, and S. Budavari, The Merck Index, Merck Research Laboratories, Whitehouse Station Readington, NJ, USA, 13th edition, 2001.
[2]  S. R. Cummings, S. Eckert, K. A. Krueger et al., “The effect of raloxifene on risk of breast cancer in postmenopausal women,” Journal of the American Medical Association, vol. 281, no. 23, pp. 2189–2197, 1999.
[3]  T. Hol, M. B. Cox, H. U. Bryant, and M. W. Draper, “Selective estrogen receptor modulators and postmenopausal women's health,” Journal of Women's Health, vol. 6, no. 5, pp. 523–531, 1997.
[4]  D. Suneetha and A. Lakshmana Rao, “A new validated RP-HPLC method for the estimation of raloxifene in pure and tablet dosage form,” Rasayan Journal of Chemistry, vol. 3, no. 1, pp. 117–121, 2010.
[5]  D. C. Pavithra and L. Sivasubramanian, “RP-HPLC estimation of raloxifene hydrochloride in tablets,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 3, pp. 401–402, 2006.
[6]  J. Trontelj, T. Vovk, M. Bogataj, and A. Mrhar, “HPLC analysis of raloxifene hydrochloride and its application to drug quality control studies,” Pharmacological Research, vol. 52, no. 4, pp. 334–339, 2005.
[7]  B. Madhu, A. A. Kumara, S. Prashanth et al., “Sensitive and rapid HPLC method for the determination of raloxifene hydrochloride,” Journal of Pharmacy Research, vol. 4, no. 3, pp. 582–584, 2011.
[8]  K. Basavaiah, U. R. A. Kumar, and K. Tharpa, “Gradient HPLC analysis of raloxifene hydrochloride and its application to drug quality control,” Acta Pharmaceutica, vol. 58, no. 3, pp. 347–356, 2008.
[9]  A. Sathyaraj, M. Rao, and V. Satyanarayana, “Gradient RP-HPLC method for the detrmination of purity and assay of raloxifene hydrochloride in bulk drug,” International Journal of Pharmaceutical Chemistry, vol. 1, no. 3, pp. 372–378, 2011.
[10]  G. Srinivas, G. V. Kanumula, P. Madhavan et al., “Development and validation of stability indicating method for the quantitative determination of raloxifene hydrochloride and its related impurities using UPLC,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 1, pp. 553–562, 2011.
[11]  B. Kalyanaramu and K. Raghubabu, “Development of new analytical method for determination of raloxifene hydrochloride in formulations based on charge-transfer complex formation,” International Journal of Analytical and Bioanalytical Chemistry, vol. 1, no. 2, pp. 29–33, 2011.
[12]  D. C. Pavithra and L. Sivasubramanian, “New spectrophotometric determination of raloxifene hydrochloride in tablets,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 3, pp. 375–376, 2006.
[13]  K. Basavaiah and U. R. Anilkumar, “New sensitive spectrophotometric methods for the determination of raloxifene hydrochloride in pharmaceuticals using bromate-bromide, methyl orange and indigo carmine,” E-Journal of Chemistry, vol. 3, no. 13, pp. 242–249, 2006.
[14]  M. M. Annapurna, M. E. B. Rao, and B. V. Ravi Kumar, “Spectrophotometric determination of raloxifene hydrochloride in pharmaceutical formulations,” E-Journal of Chemistry, vol. 4, no. 1, pp. 79–82, 2007.
[15]  J. Trontelj, T. Vovic, M. Bogataj, and A. Mrhar, “Development and validation of liquid chromatography-tandem mass spectrometry assay for determination of raloxifene and its metabolites in human plasma,” Journal of Chromatography B, vol. 855, no. 2, pp. 220–227, 2007.
[16]  Z. Y. Yang, Z. F. Zhang, X. B. He, G. Y. Zhao, and Y. Q. Zhang, “Validation of a novel HPLC method for the determination of Raloxifene and its pharmacokinetics in rat plasma,” Chromatographia, vol. 65, no. 3-4, pp. 197–201, 2007.
[17]  S. A. Coran, M. Bambagiotti-Alberti, V. Giannellini, A. Baldi, G. Picchioni, and F. Paoli, “Development of a densitometric method for the determination of cephalexin as an alternative to the standard HPLC procedure,” Journal of Pharmaceutical and Biomedical Analysis, vol. 18, no. 1-2, pp. 271–274, 1998.
[18]  P. D. Sethi, High Performance Thin Layer Chromatography (Quantitative Analysis of Pharmaceutical Formulations), CBS Publishers, New Delhi, India, 1996.
[19]  International conference on Harmonization ICH/CPMP guidelines Q2(R1), Validation of Analytical Procedures: Text and Methodology, ICH, Geneva, Switzerland, 2005.
[20]  International Conference on Harmonization Q1A, Stability Testing of New Drug Substances and Products, ICH, Geneva, Switzerland, 1993.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413