全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermoelectric Characterization of Electronic Properties of GaMnAs Nanowires

DOI: 10.1155/2012/480813

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanowires with magnetic doping centers are an exciting candidate for the study of spin physics and proof-of-principle spintronics devices. The required heavy doping can be expected to have a significant impact on the nanowires' electron transport properties. Here, we use thermopower and conductance measurements for transport characterization of Ga0.95Mn0.05As nanowires over a broad temperature range. We determine the carrier type (holes) and concentration and find a sharp increase of the thermopower below temperatures of 120?K that can be qualitatively described by a hopping conduction model. However, the unusually large thermopower suggests that additional mechanisms must be considered as well. 1. Introduction Self-assembled semiconducting epitaxial nanowires are promising building blocks for field effect transistors [1], sensors [2], and solar cells [3]. An exciting new direction, which has recently been shown to be possible due to successful incorporation of magnetic Mn dopants into epitaxially grown GaAs nanowires (NWs) [4–11], is their use for proof-of-concept spintronics devices [12]. The doping techniques are advancing rapidly, and it has recently been shown that ion beam implantation can produce single crystalline, homogeneously doped GaMnAs NWs [13]. Furthermore, a recent study found that the Curie temperature of GaMnAs nanostrips could be enhanced to 200?K with nanostructure engineering [14], suggesting the possibility for nanowire-based devices to operate at higher temperatures compared to thin films or bulk. In addition to the exciting possibilities for application, from the fundamental point of view, ferromagnetic NWs will provide an opportunity to investigate the spin-Seebeck effect in reduced dimensions [15]. A deeper understanding of how spins and phonons couple thermodynamically could in turn lead to fundamentally new applications, such as spin-based cooling and magnetically sensitive thermoelectrics. Here, we investigate the thermoelectric properties of Ga0.95Mn0.05As NWs. Combining thermopower and conductance (or resistance) measurements can provide information on carrier density when conventional characterization techniques via the Hall effect and field effect are not possible [16]. We were able to estimate the hole carrier density from thermopower measurements to be ?cm?3 in our NW. In addition, we find a dramatic rise in the resistance and thermopower of the NW below 120?K [17–19]. The resistance versus temperature measurements point to the role of Mott variable range hopping (VRH) transport with activation energy 62?meV at 100?K

References

[1]  Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003.
[2]  P. H. Yeh, Z. Li, and Z. L. Wang, “Schottky-gated probe-free ZnO nanowire biosensor,” Advanced Materials, vol. 21, no. 48, pp. 4975–4978, 2009.
[3]  A. I. Hochbaum and P. Yang, “Semiconductor nanowires for energy conversion,” Chemical Reviews, vol. 110, no. 1, pp. 527–546, 2010.
[4]  J. Sadowski, P. D?uzewski, S. Kret et al., “GaAs:Mn nanowires grown by molecular beam epitaxy of (Ga,Mn)As at MnAs segregation conditions,” Nano Letters, vol. 7, no. 9, pp. 2724–2728, 2007.
[5]  F. Martelli, S. Rubini, M. Piccing, et al., “Manganese-induced growth of GaAs nanowires,” Nano Letters, vol. 6, no. 9, pp. 2130–2134, 2006.
[6]  M. F. H. Wolff, D. G?rlitz, K. Nielsch, M. E. Messing, and K. Deppert, “Synthesis and magnetic characterization of MnAs nanoparticles via nanoparticle conversion,” Nanotechnology, vol. 22, no. 5, Article ID 055602, 2011.
[7]  J. Adell, I. Ulfat, J. Sadowski, L. Ilver, and J. Kanski, “Electron spectroscopic studies of nanowires formed by (GaMn)As growth on GaAs(111)B,” Solid State Communications, vol. 151, no. 11, pp. 850–854, 2011.
[8]  H. C. Jeon, T. W. Kang, T. W. Kim, Y. J. Yu, W. Jhe, and S. A. Song, “Magnetic and optical properties of (Ga1-x Mnx) As diluted magnetic semiconductor quantum wires with above room ferromagnetic transition temperature,” Journal of Applied Physics, vol. 101, no. 2, Article ID 023508, 2007.
[9]  A. Rudolph, M. Soda, M. Kiessling et al., “Ferromagnetic GaAs/GaMnAs core-shell nanoWires Grown by Molecular Beam Epitaxy,” Nano Letters, vol. 9, no. 11, pp. 3860–3866, 2009.
[10]  H. S. Kim, Y. J. Cho, K. J. Kong et al., “Room-temperature ferromagnetic Ga1-x-MnxAs ( ) nanowires: dependence of electronic structures and magnetic properties on Mn content,” Chemistry of Materials, vol. 21, no. 6, pp. 1137–1143, 2009.
[11]  P. Dluzewski, J. Sadowski, S. Kret, J. Dabrowski, and K. Sobczak, “TEM determination of directions of (Ga,Mn)As nanowires grown by MBE on GaAs(001) substrates,” Journal of Microscopy, vol. 236, no. 2, pp. 115–118, 2009.
[12]  D. D. Awschalom, N. Samarth, and D. Loss, Semiconductor Spintronics and Quantum Computation, Springer-Verlag, Heidelberg, Germany, 2002.
[13]  C. Borschel, M.E. Messing, M.T. Borgstrom et al., “A new route toward semiconductor nanospintronics: highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions,” Nano Letters, vol. 11, no. 9, pp. 3935–3940, 2011.
[14]  L. Chen, X. Yang, F. Yang et al., “Enhancing the curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering,” Nano Letters, vol. 11, no. 7, pp. 2584–2589, 2011.
[15]  Y. Dubi and M. Di Ventra, “Thermospin effects in a quantum dot connected to ferromagnetic leads,” Physical Review B, vol. 79, no. 8, Article ID 081302, 2009.
[16]  C. H. Lee, G. C. Yi, Y. M. Zuev, and P. Kim, “Thermoelectric power measurements of wide band gap semiconducting nanowires,” Applied Physics Letters, vol. 94, no. 2, Article ID 022106, 2009.
[17]  Y. I. Ravich and S. A. Nemov, “Hopping conduction via strongly localized impurity states of indium in PbTe and its solid solutions,” Semiconductors, vol. 36, no. 1, pp. 1–20, 2002.
[18]  O. E. Parfenov and F. A. Shklyaruk, “On the temperature dependence of the thermoelectric power in disordered semiconductors,” Semiconductors, vol. 41, no. 9, pp. 1021–1026, 2007.
[19]  D. Gitsu, T. Huber, L. Konopko, and A. Nikolaeva, “Peculiarities of thermopower in Bi microwires at low temperatures,” Physica Status Solidi B, vol. 242, no. 12, pp. 2497–2502, 2005.
[20]  N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK, 1979.
[21]  V. Osinniy, K. Dybko, A. Jedrzejczak, et al., “Thermoelectric studies of electronic properties of ferromagnetic GaMnAs layers,” Semiconductor Physics, Quantum Electronics and Optoelectronics, vol. 11, no. 2, pp. 257–265, 2008.
[22]  B. L. Sheu, R. C. Myers, J. M. Tang et al., “Onset of ferromagnetism in low-doped Ga1-xMnxAs,” Physical Review Letters, vol. 99, no. 22, Article ID 227205, 2007.
[23]  J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgstr?m, “High-performance single nanowire tunnel diodes,” Nano Letters, vol. 10, no. 3, pp. 974–979, 2010.
[24]  J.P. Small, K.M. Perez, and P. Kim, “Modulation of thermoelectric power of individual carbon nanotubes,” Physical Review Letters, vol. 91, no. 25, pp. 2568011–2568014, 2003.
[25]  M. C. Llaguno, J. E. Fischer, A. T. Johnson, and J. Hone, “Observation of thermopower oscillations in the coulomb blockade regime in a semiconducting carbon nanotube,” Nano Letters, vol. 4, no. 1, pp. 45–49, 2004.
[26]  W. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, and P. Yang, “Field-effect modulation of seebeck coefficient in single PbSe nanowires,” Nano Letters, vol. 9, no. 4, pp. 1689–1693, 2009.
[27]  W. Paschoal Jr, S. Kumar, C. Borschel, et al., “Hopping conduction in Mn ion implanted GaAs Nanowires,” Nano Letters, vol. 12, no. 9, pp. 4838–4842, 2012.
[28]  H. Ohno, “Making nonmagnetic semiconductors ferromagnetic,” Science, vol. 281, no. 5379, pp. 951–956, 1998.
[29]  A. Bentien, S. Johnsen, G. K. H. Madsen, B. B. Iversen, and F. Steglich, “Colossal seebeck coefficient in strongly correlated semiconductor FeSb2,” Europhysics Letters, vol. 80, no. 1, Article ID 17008, 2007.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133