全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment

DOI: 10.1155/2012/545930

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ultrasonic dispersion of multiwalled carbon nanotube (MWCNT) suspensions was assessed by studying the differential sedimentation of the particles in an acid anhydride often employed as a curing agent for epoxy resins. The particle size distributions were characterized by the means of a disc centrifuge, and the effect of dispersion time, power density, and total energy input, for both bath and circulation probe ultrasonic dispersing equipment was investigated. The mass of freely suspended MWCNTs relative to agglomerated MWCNTs was estimated as a measure of the quality of the dispersions, and the results showed that this ratio followed a power law scaling with the energy dissipated in the sonication treatment. If the sonication power level was too high, sonochemical degradation of the curing agent could occur. The mean agglomerate MWCNT size distribution was estimated, and the fragmentation of the agglomerates was modeled by means of fragmentation theory. Indications of both rupture and erosion fragmentation processes for the MWCNT agglomerates were observed. 1. Introduction Carbon nanotubes (CNTs) have been studied extensively since the landmark paper by Iijima in 1991 [1]. The exceptional mechanical, thermal, and electrical properties combined with the high aspect ratio and large surface area have made CNTs a promising material for a wide range of applications. However, there are major challenges to overcome in order to utilize these properties. There are several different production methods for CNTs, such as laser ablation, electrolysis, electric arc discharge, sonochemistry, chemical vapour deposition, and catalyst arrays [2]. These methods produce different CNTs with different chemical structure, length, diameter, defects, and varying types and degrees of contamination [3]. This will affect physical properties, such as differences in nanotube curvature, reactivity, failure mechanisms, mechanical properties, and surface interactions. Although the mechanical properties of carbon nanotubes are superior to, for example, continuous and short carbon fibres, problems with dispersion, load transfer, and alignment in a polymer matrix have, so far, not led to CNT composites being a competitive alternative to these more traditional materials. Carbon-fibre-reinforced polymers (CFRPs) are more suitable for use in structural composites. The primary role of a polymer matrix is to hold the fibres in plane and transfer load, but there are modes of deformation where an increase in the mechanical properties of the polymer matrix is of importance. In this context,

References

[1]  S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991.
[2]  J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, “Dispersion of carbon nanotubes in liquids,” Journal of Dispersion Science and Technology, vol. 24, no. 1, pp. 1–41, 2003.
[3]  P. X. Hou, C. Liu, and H. M. Cheng, “Purification of carbon nanotubes,” Carbon, vol. 46, no. 15, pp. 2003–2025, 2008.
[4]  D. L. Shi, X. Q. Feng, Y. Y. Huang, K. C. Hwang, and H. Gao, “The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites,” Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 126, no. 3, pp. 250–257, 2004.
[5]  A. Godara, L. Mezzo, F. Luizi et al., “Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites,” Carbon, vol. 47, no. 12, pp. 2914–2923, 2009.
[6]  E. J. Garcia, B. L. Wardle, and A. John Hart, “Joining prepreg composite interfaces with aligned carbon nanotubes,” Composites A, vol. 39, no. 6, pp. 1065–1070, 2008.
[7]  J.-H. Du, J. Bai, and H.-M. Cheng, “The present status and key problems of carbon nanotube based polymer composites,” Express Polymer Letters, vol. 1, no. 5, pp. 253–273, 2007.
[8]  R. K. Duncan, X. G. Chen, J. B. Bult, L. C. Brinson, and L. S. Schadler, “Measurement of the critical aspect ratio and interfacial shear strength in MWNT/polymer composites,” Composites Science and Technology, vol. 70, no. 4, pp. 599–605, 2010.
[9]  A. H. Barber, S. R. Cohen, S. Kenig, and H. D. Wagner, “Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix,” Composites Science and Technology, vol. 64, no. 15, pp. 2283–2289, 2004.
[10]  A. Martone, C. Formicola, M. Giordano, and M. Zarrelli, “Reinforcement efficiency of multi-walled carbon nanotube/epoxy nanocomposite,” Composites Science and Technology, vol. 70, no. 7, pp. 1154–1160, 2010.
[11]  P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Composites A, vol. 41, no. 10, pp. 1345–1367, 2010.
[12]  S. Azoubel and S. Magdassi, “The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge,” Carbon, vol. 48, no. 12, pp. 3346–3352, 2010.
[13]  O. Behrend, K. Ax, and H. Schubert, “Influence of continuous phase viscosity on emulsification by ultrasound,” Ultrasonics Sonochemistry, vol. 7, no. 2, pp. 77–85, 2000.
[14]  K. S. Suslick and G. J. Price, “Applications of ultrasound to materials chemistry,” Annual Review of Materials Science, vol. 29, pp. 295–326, 1999.
[15]  J. Dooher, R. Lippman, T. Morrone, H. Pohle, and D. Wright, “Ultrasonic disintegration of particles,” pp. 11–16, 1978.
[16]  T. J. Mason and P. L. Lorimer, Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, Weinheim, Germany, 2002.
[17]  C. McClory, S. J. Chin, and T. McNally, “Polymer/carbon nanotube composites,” Australian Journal of Chemistry, vol. 62, no. 8, pp. 762–785, 2009.
[18]  A. Lucas, C. Zakri, M. Maugey, M. Pasquali, P. Van Der Schoot, and P. Poulin, “Kinetics of nanotube and microfiber scission under sonication,” Journal of Physical Chemistry C, vol. 113, no. 48, pp. 20599–20605, 2009.
[19]  S. Badaire, P. Poulin, M. Maugey, and C. Zakri, “In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering,” Langmuir, vol. 20, no. 24, pp. 10367–10370, 2004.
[20]  D. W. Schaefer and R. S. Justice, “How nano are nanocomposites?” Macromolecules, vol. 40, no. 24, pp. 8501–8517, 2007.
[21]  S. H. Kim, W. I. Lee, and J. M. Park, “Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry,” Carbon, vol. 47, no. 11, pp. 2699–2703, 2009.
[22]  T. Liu, S. Luo, Z. Xiao, C. Zhang, and B. Wang, “Preparative ultracentrifuge method for characterization of carbon nanotube dispersions,” Journal of Physical Chemistry C, vol. 112, no. 49, pp. 19193–19202, 2008.
[23]  G. Ralston, “Introduction to analytical ultracentrifugation,” 1992, https://www.beckmancoulter.com/.
[24]  B. Krause, G. Petzold, S. Pegel, and P. P?tschke, “Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers,” Carbon, vol. 47, no. 3, pp. 602–612, 2009.
[25]  S. Pegel, P. P?tschke, G. Petzold, I. Alig, S. M. Dudkin, and D. Lellinger, “Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts,” Polymer, vol. 49, no. 4, pp. 974–984, 2008.
[26]  B. Krause, M. Mende, P. P?tschke, and G. Petzold, “Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time,” Carbon, vol. 48, no. 10, pp. 2746–2754, 2010.
[27]  F. K. Hansen, “Particle size measurements with a disc centrifuge,” in Particle Size Distribution II, T. Provder, Ed., pp. 169–183, ACS Symposium Series, Washington, DC, USA, 1991.
[28]  M. Nadler, T. Mahrholz, U. Riedel, C. Schilde, and A. Kwade, “Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge,” Carbon, vol. 46, no. 11, pp. 1384–1392, 2008.
[29]  J. Mejia, F. Tichelaar, C. Saout et al., “Effects of the dispersion methods in Pluronic F108 on the size and the surface composition of MWCNTs and their implications in toxicology assessment,” Journal of Nanoparticle Research, vol. 13, no. 2, pp. 655–667, 2011.
[30]  L. Zhao and L. Gao, “Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol,” Colloids and Surfaces A, vol. 224, no. 1-3, pp. 127–134, 2003.
[31]  Q. Li, M. Zaiser, and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent,” Physica Status Solidi (A) Applied Research, vol. 201, no. 13, pp. R89–R91, 2004.
[32]  M. Kerker, The Scattering of Light, Academic Press, New York, NY, USA, 1969.
[33]  A. Koshio, M. Yudasaka, M. Zhang, and S. Iijima, “A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication,” Nano Letters, vol. 1, no. 7, pp. 361–363, 2001.
[34]  A. Koshio, M. Yudasaka, and S. Iijima, “Thermal degradation of ragged single-wall carbon nanotubes produced by polymer-assisted ultrasonication,” Chemical Physics Letters, vol. 341, no. 5-6, pp. 461–466, 2001.
[35]  K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, “Mechanical damage of carbon nanotubes by ultrasound,” Carbon, vol. 34, no. 6, pp. 814–816, 1996.
[36]  P. S. Gill, S. R. Sauerbrunn, and B. S. Crowe, “High resolution thermogravimetry,” Journal of Thermal Analysis, vol. 38, no. 3, pp. 255–266, 1992.
[37]  N. Grossiord, O. Regev, J. Loos, J. Meuldijk, and C. E. Koning, “Time-dependent study of the exfoliation process of carbon nanotubes in aqueous dispersions by using UV-visible spectroscopy,” Analytical Chemistry, vol. 77, no. 16, pp. 5135–5139, 2005.
[38]  T. Hielscher, “Ultrasonic production of nano-size dispersions and emulsions,” European Nano Systems, pp. 138–143, 2005.
[39]  A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.
[40]  F. Hennrich, R. Krupke, K. Arnold et al., “The mechanism of cavitation-induced scission of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 111, no. 8, pp. 1932–1937, 2007.
[41]  S. G. Prolongo, M. R. Gude, and A. Urena, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Composites Science and Technology, vol. 71, pp. 765–771, 2011.
[42]  Z. Cheng and S. Redner, “Kinetics of fragmentation,” Journal of Physics A, vol. 23, no. 7, pp. 1233–1258, 1990.
[43]  K. Yang, M. Gu, Y. Guo, X. Pan, and G. Mu, “Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites,” Carbon, vol. 47, no. 7, pp. 1723–1737, 2009.
[44]  S. Hansen, D. V. Khakhar, and J. M. Ottino, “Dispersion of solids in nonhomogeneous viscous flows,” Chemical Engineering Science, vol. 53, no. 10, pp. 1803–1817, 1998.
[45]  J. M. Ottino, P. DeRoussel, S. Hansen, and D. V. Khakhar, “Mixing and dispersion of viscous liquids and powdered solids,” in Advances in Chemical Engineering, J. Wei, Ed., vol. 25, pp. 105–204, Academic Press, New York, NY, USA, 1999.
[46]  S. P. Rwei, I. Manas-Zloczower, and D. L. Feke, “Characterization of agglomerate dispersion by erosion in simple shear flows,” Polymer Engineering & Science, vol. 31, no. 8, pp. 558–562, 1991.
[47]  S. P. Rwei, I. Manas-Zloczower, and D. L. Feke, “Analysis of dispersion of carbon black in polymeric melts and its effect on compound properties,” Polymer Engineering & Science, vol. 32, no. 2, pp. 130–135, 1992.
[48]  G. Kasaliwal, A. G?ldel, and P. P?tschke, “Influence of processing conditions in small-scale melt mixing and compression molding on the resistivity and morphology of polycarbonate-MWNT composites,” Journal of Applied Polymer Science, vol. 112, no. 6, pp. 3494–3509, 2009.
[49]  G. R. Kasaliwal, S. Pegel, A. G?ldel, P. P?tschke Petra, and G. Heinrich, “Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate,” Polymer, vol. 51, no. 12, pp. 2708–2720, 2010.
[50]  A. N. Kolmogorov, “The logarithmically normal law of distribution of dimensions of particles when broken into small parts,” Doklady Akademii Nauk, vol. 31, pp. 99–101, 1941.
[51]  A. F. Filippov, “On the distribution of the sizes of particles which undergo splitting,” Theory of Probability and its Applications, vol. 6, pp. 275–294, 1961.
[52]  B. Bittmann, F. Haupert, and A. K. Schlarb, “Ultrasonic dispersion of inorganic nanoparticles in epoxy resin,” Ultrasonics Sonochemistry, vol. 16, no. 5, pp. 622–628, 2009.
[53]  S. V. Kao and S. G. Mason, “Dispersion of particles by shear,” Nature, vol. 253, no. 5493, pp. 619–621, 1975.
[54]  R. L. Powell and S. G. Mason, “Dispersion by laminar flow,” AIChE Journal, vol. 28, no. 2, pp. 286–923, 1982.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413