全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy

DOI: 10.1155/2012/169284

Full-Text   Cite this paper   Add to My Lib

Abstract:

The fabrication of GaAs- and InP-based III-V semiconductor nanowires with axial/radial heterostructures by using selective-area metal-organic vapor-phase epitaxy is reviewed. Nanowires, with a diameter of 50–300?nm and with a length of up to 10?μm, have been grown along the ? 1 1 1 ? B or ? 1 1 1 ? A crystallographic orientation from lithography-defined SiO2 mask openings on a group III-V semiconductor substrate surface. An InGaAs quantum well (QW) in GaAs/InGaAs nanowires and a GaAs QW in GaAs/AlGaAs or GaAs/GaAsP nanowires have been fabricated for the axial heterostructures to investigate photoluminescence spectra from QWs with various thicknesses. Transmission electron microscopy combined with energy dispersive X-ray spectroscopy measurements have been used to analyze the crystal structure and the atomic composition profile for the nanowires. GaAs/AlGaAs, InP/InAs/InP, and GaAs/GaAsP core-shell structures have been found to be effective for the radial heterostructures to increase photoluminescence intensity and have enabled laser emissions from a single GaAs/GaAsP nanowire waveguide. The results have indicated that the core-shell structure is indispensable for surface passivation and practical use of nanowire optoelectronics devices. 1. Introduction Interest in semiconductor nanowires has been growing over the past decade when the fabrication technology for Si-integrated circuits entered an advanced phase where the gate length of a field effect transistor (FET) shrank to a few tens of nanometers with the evolution of the technology. Fabrication of nanostructures to explore nanophotonics has also been a focus of interest for those who have been pursuing a single-photon source that can be used in optical communication systems that are expected to provide high degrees of reliability. Etching of semiconductor crystals has been widely used in conventional production processes to fabricate FETs and optical devices. However, eliminating damage or contamination created by etching on the crystal surface has become more difficult as device sizes have reduced. Compared to etching-based top-down methods of fabrication, the bottom-up method based on crystal growth is a counter approach to fabricating nanostructures without any concern for damage during fabrication. Wagner and Ellis reported the vapor-liquid-solid (VLS) growth of Si whiskers using Au as a catalyst [1] to form semiconductor nanowires in 1964. Since then, various nanowires comprised of Si [2, 3], Ge [2, 3], GaAs [4], InP [5], In2O3 [6], GaN [7], and ZnO [8] grown by VLS have been reported and the

References

[1]  R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Applied Physics Letters, vol. 4, no. 5, pp. 89–90, 1964.
[2]  G. A. Bootsma and H. J. Gassen, “A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane,” Journal of Crystal Growth, vol. 10, no. 3, pp. 223–234, 1971.
[3]  E. I. Givargizov, “Fundamental aspects of VLS growth,” Journal of Crystal Growth, vol. 31, pp. 20–30, 1975.
[4]  J. Kasahara, K. Kajiwara, and T. Yamada, “GaAs whiskers grown by a thermal decomposition method,” Journal of Crystal Growth, vol. 38, no. 1, pp. 23–28, 1977.
[5]  A. M. Morales and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, vol. 279, no. 5348, pp. 208–211, 1998.
[6]  C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, “Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties,” Advanced Materials, vol. 15, no. 2, pp. 143–146, 2003.
[7]  W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube- confined reaction,” Science, vol. 277, no. 5330, pp. 1287–1289, 1997.
[8]  M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Advanced Materials, vol. 13, no. 2, pp. 113–116, 2001.
[9]  K. Haraguchi, T. Katsuyama, K. Hiruma, and K. Ogawa, “GaAs p-n junction formed in quantum wire crystals,” Applied Physics Letters, vol. 60, no. 6, pp. 745–747, 1992.
[10]  C. Li, D. Zhang, X. Liu et al., “In2O3 nanowires as chemical sensors,” Applied Physics Letters, vol. 82, no. 10, pp. 1613–1615, 2003.
[11]  Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, vol. 312, no. 5771, pp. 243–246, 2006.
[12]  B. Tian, X. Zheng, T. J. Kempa et al., “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, no. 7164, pp. 885–889, 2007.
[13]  M. T. Bj?rk, B. J. Ohlsson, C. Thelander et al., “Nanowire resonant tunneling diodes,” Applied Physics Letters, vol. 81, no. 23, pp. 4458–4460, 2002.
[14]  Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Letters, vol. 3, no. 2, pp. 149–152, 2003.
[15]  O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Solar Energy Materials and Solar Cells, vol. 93, no. 8, pp. 1388–1393, 2009.
[16]  A. F. i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J. R. Morante, and G. Abstreiter, “Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires,” Small, vol. 4, no. 7, pp. 899–903, 2008.
[17]  M. Hei?, A. Gustafsson, S. Conesa-Boj et al., “Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures,” Nanotechnology, vol. 20, no. 7, Article ID 075603, 2009.
[18]  B.-S. Kim, T.-W. Koo, J.-H. Lee et al., “Catalyst-free growth of single-crystal silicon and germanium nanowires,” Nano Letters, vol. 9, no. 2, pp. 864–869, 2009.
[19]  T. Hamano, H. Hirayama, and Y. Aoyagi, “New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy,” Japanese Journal of Applied Physics, Part 2, vol. 36, no. 3, pp. L286–L288, 1997.
[20]  J. Motohisa, J. Takeda, M. Inari, J. Noborisaka, and T. Fukui, “Growth of GaAs/AlGaAs hexagonal pillars on GaAs (111)B surfaces by selective-area MOVPE,” Physica E, vol. 23, no. 3-4, pp. 298–304, 2004.
[21]  M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, “Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy,” Japanese Journal of Applied Physics, Part 2, vol. 36, no. 4, pp. L459–L462, 1997.
[22]  M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, “Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0001) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks,” Journal of Crystal Growth, vol. 189-190, pp. 138–141, 1998.
[23]  H. Sekiguchi, K. Kishino, and A. Kikuchi, “Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate,” Applied Physics Letters, vol. 96, no. 23, Article ID 231104, 2010.
[24]  W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters, vol. 80, no. 22, p. 4232, 2002.
[25]  S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Applied Physics Letters, vol. 92, no. 12, Article ID 121108, 2008.
[26]  H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, “Selective-area growth of GaAs and InAs nanowires-homo- and heteroepitaxy using templates,” Journal of Crystal Growth, vol. 310, no. 23, pp. 5093–5097, 2008.
[27]  K. Sladek, V. Klinger, J. Wensorra, M. Akabori, H. Hardtdegen, and D. Grützmacher, “MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires,” Journal of Crystal Growth, vol. 312, no. 5, pp. 635–640, 2010.
[28]  L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Size-dependent photoluminescence of hexagonal nanopillars with single InGaAs/GaAs quantum wells fabricated by selective-area metal organic vapor phase epitaxy,” Applied Physics Letters, vol. 89, no. 20, Article ID 203110, 2006.
[29]  J. Noborisaka, J. Motohisa, S. Hara, and T. Fukui, “Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 87, no. 9, pp. 1–3, 2005.
[30]  A. Hayashida, T. Sato, S. Hara, J. Motohisa, K. Hiruma, and T. Fukui, “Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires,” Journal of Crystal Growth, vol. 312, no. 24, pp. 3592–3598, 2010.
[31]  P. Mohan, J. Motohisa, and T. Fukui, “Fabrication of InPInAsInP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 88, no. 13, Article ID 133105, 2006.
[32]  B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, “Single GaAs/GaAsP coaxial core-shell nanowire lasers,” Nano Letters, vol. 9, no. 1, pp. 112–116, 2009.
[33]  S. Fujisawa, T. Sato, S. Hara, J. Motohisa, K. Hiruma, and T. Fukui, “Growth and characterization of a GaAs quantum well buried in GaAsP/GaAs vertical heterostructure nanowires by selective-area metal organic vapor phase epitaxy,” Japanese Journal of Applied Physics, vol. 50, no. 4, part 2, article 04DH03, 2011.
[34]  D. K. Biegelsen, R. D. Bringans, J. E. Northrup, and L.-E. Swartz, “Reconstructions of GaAs(111) surfaces observed by scanning tunneling microscopy,” Physical Review Letters, vol. 65, no. 4, pp. 452–455, 1990.
[35]  M. Yoshimura, K. Tomioka, K. Hiruma, S. Hara, J. Motohisa, and T. Fukui, “Growth and characterization of InGaAs nanowires formed on GaAs(111)B by selective-area metal organic vapor phase epitaxy,” Japanese Journal of Applied Physics, vol. 49, no. 4, Article ID 04DH08, 2010.
[36]  T. Nishida, K. Uwai, Y. Kobayashi, and N. Kobayashi, “Phase diagram of GaAs (111)B surface during metal-organic chemical vapor deposition measured by surface photo-absorption,” Japanese Journal of Applied Physics, Part 1, vol. 34, no. 12, pp. 6326–6330, 1995.
[37]  J. Noborisaka, J. Motohisa, and T. Fukui, “Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy,” Applied Physics Letters, vol. 86, no. 21, Article ID 213102, pp. 1–3, 2005.
[38]  P. Bhattacharya, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, EMIS Data Reviews Series No. 8, IE, London, UK, 1993.
[39]  Y. D. Galeuchet, P. Roentgen, and V. Graf, “GaInAs/InP selective area metalorganic vapor phase epitaxy for one-step-grown buried low-dimensional structures,” Journal of Applied Physics, vol. 68, no. 2, pp. 560–568, 1990.
[40]  T. Takebe, M. Fujii, T. Yamamoto, K. Fujita, and T. Watanabe, “Orientation-dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates,” Journal of Applied Physics, vol. 81, no. 11, pp. 7273–7281, 1997.
[41]  T. Sasaki, M. Kitamura, and I. Mito, “Selective metalorganic vapor phase epitaxial growth of InGaAsP / InP layers with bandgap energy control in InGaAs / InGaAsP multiple-quantum well structures,” Journal of Crystal Growth, vol. 132, no. 3-4, pp. 435–443, 1993.
[42]  S. Martini, A. A. Quivy, A. Tabata, and J. R. Leite, “Influence of the temperature and excitation power on the optical properties of InGaAs/GaAs quantum wells grown on vicinal GaAs(001) surfaces,” Journal of Applied Physics, vol. 90, no. 5, pp. 2280–2289, 2001.
[43]  L. Yang, J. Motohisa, J. Takeda, K. Tomioka, and T. Fukui, “Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence,” Nanotechnology, vol. 18, no. 10, Article ID 105302, 2007.
[44]  L. Ouattara, A. Mikkelsen, N. Sk?ld et al., “GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy,” Nano Letters, vol. 7, no. 9, pp. 2859–2864, 2007.
[45]  K. Ishikawa, N. Yamamoto, K. Tateno, and Y. Watanabe, “Characterization of individual GaAs/AlGaAs self-standing nanowires by cathodoluminescence technique using transmission electron microscope,” Japanese Journal of Applied Physics, Part 1, vol. 47, no. 8, pp. 6596–6600, 2008.
[46]  C. Chen, N. Braidy, C. Couteau, C. Fradin, G. Weihs, and R. Lapierre, “Multiple quantum well AlGaAs nanowires,” Nano Letters, vol. 8, no. 2, pp. 495–499, 2008.
[47]  J. Heinrich, A. Huggenberger, T. Heindel et al., “Single photon emission from positioned GaAs/AlGaAs photonic nanowires,” Applied Physics Letters, vol. 96, no. 21, Article ID 211117, 2010.
[48]  M. Nakayama, T. Hirao, and T. Hasegawa, “Characteristics of photoluminescence due to exciton-exciton scattering in GaAs/AlAs multiple quantum wells,” Journal of Applied Physics, vol. 105, no. 12, Article ID 123525, 2009.
[49]  R. Dingle, W. Wiegmann, and C. H. Henry, “Quantum states of confined carriers in very thin heterostructures,” Physical Review Letters, vol. 33, no. 14, pp. 827–830, 1974.
[50]  S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, NY, USA, 2nd edition, 1981.
[51]  M. J. Tambe, F. Allard, and S. Grad?eak, “Characterization of core-shell GaAs/AlGaAs nanowire heterostructures using advanced electron microscopy,” Journal of Physics: Conference Series, no. 209, Article ID 012033, 2010.
[52]  P. K. Mohseni, C. Maunders, G. A. Botton, and R. R. LaPierre, “GaP/GaAsP/GaP core-multishell nanowire heterostructures on (111) silicon,” Nanotechnology, vol. 18, no. 44, Article ID 445304, 2007.
[53]  C. Chen, M. C. Plante, C. Fradin, and R. R. LaPierre, “Layer-by-layer and step-flow growth mechanisms in GaAsP/GaP nanowire heterostructures,” Journal of Materials Research, vol. 21, no. 11, pp. 2801–2809, 2006.
[54]  C. P. T. Svensson, W. Seifert, M. W. Larsson et al., “Epitaxially grown GaP/GaAs1-xPx/GaP double heterostructure nanowires for optical applications,” Nanotechnology, vol. 16, no. 6, pp. 936–939, 2005.
[55]  W. Seifert, M. Borgstr?m, K. Deppert et al., “Growth of one-dimensional nanostructures in MOVPE,” Journal of Crystal Growth, vol. 272, no. 1–4, pp. 211–220, 2004.
[56]  J. J. Tietjen and J. A. Amick, “The preparation and properties of vapor-deposited epitaxial using arsine and phosphine,” Journal of the Electrochemical Society, vol. 113, no. 7, pp. 724–728, 1966.
[57]  A. P. Roth, S. Charbonneau, and R. G. Goodchild, “Residual shallow acceptors in GaAs layers grown by metal-organic vapor phase epitaxy,” Journal of Applied Physics, vol. 54, no. 9, pp. 5350–5357, 1983.
[58]  S. Ando, S. S. Chang, and T. Fukui, “Selective epitaxy of GaAs/AlGaAs on (111) B substrates by MOCVD and applications to nanometer structures,” Journal of Crystal Growth, vol. 115, no. 1–4, pp. 69–73, 1991.
[59]  S. Kodama, S. Koyanagi, T. Hashizume, and H. Hasegawa, “Silicon interlayer based surface passivation of near-surface quantum wells,” Journal of Vacuum Science and Technology B, vol. 13, no. 4, pp. 1794–1800, 1995.
[60]  J. M. Moison, K. Elcess, F. Houzay et al., “Near-surface GaAs/Ga0.7Al0.3As quantum wells: interaction with the surface states,” Physical Review B, vol. 41, no. 18, pp. 12945–12948, 1990.
[61]  H. W. Seo, S. Y. Bae, J. Park, H. Yang, K. S. Park, and S. Kim, “Strained gallium nitride nanowires,” Journal of Chemical Physics, vol. 116, no. 21, pp. 9492–9499, 2002.
[62]  L. J. Lauhon, M. S. Gudlksen, D. Wang, and C. M. Lieber, “Epitaxial core-shell and core-multishell nanowire heterostructures,” Nature, vol. 420, no. 6911, pp. 57–61, 2002.
[63]  F. Qian, Y. Li, S. Grade?ak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Letters, vol. 4, no. 10, pp. 1975–1979, 2004.
[64]  F. Qian, S. Grade?ak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Letters, vol. 5, no. 11, pp. 2287–2291, 2005.
[65]  P. Mohan, J. Motohisa, and T. Fukui, “Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays,” Nanotechnology, vol. 16, no. 12, pp. 2903–2907, 2005.
[66]  P. Mohan, J. Motohisa, and T. Fukui, “Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires,” Applied Physics Letters, vol. 88, no. 1, Article ID 013110, 2006.
[67]  S. Hara, J. Motohisa, J. Noborisaka, J. Takeda, and T. Fukui, “Photoluminescence from single hexagonal nano-wire grown by selective area MOVPE,” Institute of Physics Conference Series, no. 184, section 5, pp. 393–398, 2005.
[68]  C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Physical Review B, vol. 39, no. 3, pp. 1871–1883, 1989.
[69]  Y. Kajikawa, M. Hata, and T. Isu, “Optical matrix elements in (110)-oriented quantum wells,” Japanese Journal of Applied Physics, Part 1, vol. 30, no. 9, pp. 1944–1945, 1991.
[70]  S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Physical Review B, vol. 43, no. 12, pp. 9649–9661, 1991.
[71]  M. Sugawara, N. Okazaki, T. Fujii, and S. Yamazaki, “Conduction-band and valence-band structures in strained quantum wells on (001) InP substrates,” Physical Review B, vol. 48, no. 11, pp. 8102–8118, 1993.
[72]  B. Pal, K. Goto, M. Ikezawa et al., “Type-II behavior in wurtzite InP/InAs/InP core-multishell nanowires,” Applied Physics Letters, vol. 93, no. 7, Article ID 073105, 2008.
[73]  X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire elecctrically driven lasers,” Nature, vol. 421, no. 6920, pp. 241–245, 2003.
[74]  M. H. Huang, S. Mao, H. Feick et al., “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897–1899, 2001.
[75]  J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nature Materials, vol. 1, no. 2, pp. 106–110, 2002.
[76]  H.-J. Choi, J. C. Johnson, R. He et al., “Self-organized GaN quantum wire UV lasers,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8721–8725, 2003.
[77]  S. Grade?ak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Applied Physics Letters, vol. 87, no. 17, Article ID 173111, pp. 1–3, 2005.
[78]  B. Cao, Y. Jiang, C. Wang et al., “Synthesis and lasing properties of highly ordered CdS nanowire arrays,” Advanced Functional Materials, vol. 17, no. 9, pp. 1501–1508, 2007.
[79]  F. Qian, Y. Li, S. Grade?ak et al., “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nature Materials, vol. 7, no. 9, pp. 701–706, 2008.
[80]  A. H. Chin, S. Vaddiraju, A. V. Maslov, C. Z. Ning, M. K. Sunkara, and M. Meyyappan, “Near-infrared semiconductor subwavelength-wire lasers,” Applied Physics Letters, vol. 88, no. 16, Article ID 163115, 2006.
[81]  K. Ikejiri, T. Sato, H. Yoshida et al., “Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy,” Nanotechnology, vol. 19, no. 26, Article ID 265604, 2008.
[82]  B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Applied Physics Letters, vol. 91, no. 13, Article ID 131112, 2007.
[83]  J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, “Optical cavity effects in ZnO nanowire lasers and waveguides,” Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8816–8828, 2003.
[84]  P. J. Pauzauskie, D. J. Sirbuly, and P. Yang, “Semiconductor nanowire ring resonator laser,” Physical Review Letters, vol. 96, no. 14, Article ID 143903, pp. 1–4, 2006.
[85]  K. Ogawa, K. Hiruma, and T. Katsuyama, “Photoluminescence characteristics of GaAs nanowhiskers: effects of depletion potential,” The Institute of Electronics, Information and Communication Engineers Transactions on Electronics, vol. E79-C, no. 11, pp. 1573–1578, 1996.
[86]  M. H. M. van Weert, O. Wunnicke, A. L. Roest et al., “Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning,” Applied Physics Letters, vol. 88, no. 4, Article ID 043109, pp. 1–3, 2006.
[87]  L. K. van Vugt, S. Ruhle, and D. Vanmaekelbergh, “Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire,” Nano Letters, vol. 6, no. 12, pp. 2707–2711, 2006.
[88]  T. M?rtensson, C. Patrik, T. Svensson et al., “Epitaxial III-V nanowires on silicon,” Nano Letters, vol. 4, no. 10, pp. 1987–1990, 2004.
[89]  B. Mandl, J. Stangl, T. M?rtensson et al., “Au-free epitaxial growth of InAs nanowires,” Nano Letters, vol. 6, no. 8, pp. 1817–1821, 2006.
[90]  T. M?rtensson, J. B. Wagner, E. Hilner et al., “Epitaxial growth of indium arsenide nanowires on silicon using nucleation templates formed by self-assembled organic coatings,” Advanced Materials, vol. 19, no. 14, pp. 1801–1806, 2007.
[91]  M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, “Atomically sharp catalyst-free wurtzite GaAsAlGaAs nanoneedles grown on silicon,” Applied Physics Letters, vol. 93, no. 2, Article ID 023116, 2008.
[92]  M. T. Bj?rk, H. Schmid, C. D. Bessire et al., “Si-InAs heterojunction Esaki tunnel diodes with high current densities,” Applied Physics Letters, vol. 97, no. 16, Article ID 163501, 2010.
[93]  K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, “Control of InAs nanowire growth directions on Si,” Nano Letters, vol. 8, no. 10, pp. 3475–3480, 2008.
[94]  K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, “Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core-shell nanowires on Si(111) substrate,” Nanotechnology, vol. 20, no. 14, Article ID 145302, 2009.
[95]  T. Tanaka, K. Tomioka, S. Hara, J. Motohisa, E. Sano, and T. Fukui, “Vertical surrounding gate transistors using single InAs nanowires grown on Si substrates,” Applied Physics Express, vol. 3, no. 2, Article ID 025003, 2010.
[96]  K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, “GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si,” Nano Letters, vol. 10, no. 5, pp. 1639–1644, 2010.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413