全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the sources of global land surface hydrologic predictability

DOI: 10.5194/hessd-10-1987-2013

Full-Text   Cite this paper   Add to My Lib

Abstract:

Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic prediction skill at seasonal lead times (i.e. 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs – primarily the state of initial soil moisture and snow) and seasonal climate forecast skill (FS). In this study we quantify the contributions of IHCs and FS to seasonal hydrologic prediction skill globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the Variable Infiltration Capacity (VIC) macroscale hydrology model, one based on Ensemble Streamflow Prediction (ESP) and another based on Reverse-ESP (rESP), both for a 47 yr reforecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts obtained from each experiment with a control simulation forced with observed atmospheric forcings over the reforecast period and estimate the ratio of Root Mean Square Error (RMSE) of both experiments for each forecast initialization date and lead time. We find that in general, the contributions of IHCs are greater than the contribution of FS over the Northern (Southern) Hemisphere during the forecast period starting in October and January (April and July). Over snow dominated regions in the Northern Hemisphere the IHCs dominate the CR forecast skill for up to 6 months lead time during the forecast period starting in April. Based on our findings we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133