全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

t-Plausibility: Generalizing Words to Desensitize Text

Full-Text   Cite this paper   Add to My Lib

Abstract:

De-identified data has the potential to be shared widely to support decision making and research. While significant advances have been made in anonymization of structured data, anonymization of textual information is in it infancy. Document sanitization requires finding and removing personally identifiable information. While current tools are effective at removing specific types of information (names, addresses, dates), they fail on two counts. The first is that complete text redaction may not be necessary to prevent re-identification, since this can affect the readability and usability of the text. More serious is that identifying information, as well as sensitive information, can be quite subtle and still be present in the text even after the removal of obvious identifiers. Observe that a diagnosis ``tuberculosis'' is sensitive, but in some situations it can also be identifying. Replacing it with the less sensitive term ``infectious disease'' also reduces identifiability. That is, instead of simply removing sensitive terms, these terms can be hidden by more general but semantically related terms to protect sensitive and identifying information, without unnecessarily degrading the amount of information contained in the document. Based on this observation, the main contribution of this paper is to provide a novel information theoretic approach to text sanitization and develop efficient heuristics to sanitize text documents.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133