全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

C-safety: a framework for the anonymization of semantic trajectories

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increasing abundance of data about the trajectories of personal movement is opening new opportunities for analyzing and mining human mobility. However, new risks emerge since it opens new ways of intruding into personal privacy. Representing the personal movements as sequences of places visited by a person during her/his movements - semantic trajectory - poses great privacy threats. In this paper we propose a privacy model defining the attack model of semantic trajectory linking and a privacy notion, called c-safety based on a generalization of visited places based on a taxonomy. This method provides an upper bound to the probability of inferring that a given person, observed in a sequence of non-sensitive places, has also visited any sensitive location. Coherently with the privacy model, we propose an algorithm for transforming any dataset of semantic trajectories into a c-safe one. We report a study on two real-life GPS trajectory datasets to show how our algorithm preserves interesting quality/utility measures of the original trajectories, when mining semantic trajectories sequential pattern mining results. We also empirically measure how the probability that the attacker's inference succeeds is much lower than the theoretical upper bound established.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133