全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Beyond k-Anonymity: A Decision Theoretic Framework for Assessing Privacy Risk

Full-Text   Cite this paper   Add to My Lib

Abstract:

An important issue any organization or individual has to face when managing data containing sensitive information, is the risk that can be incurred when releasing such data. Even though data may be sanitized before being released, it is still possible for an adversary to reconstruct the original data using additional information thus resulting in privacy violations. To date, however, a systematic approach to quantify such risks is not available. In this paper we develop a framework, based on statistical decision theory, that assesses the relationship between the disclosed data and the resulting privacy risk. We model the problem of deciding which data to disclose, in terms of deciding which disclosure rule to apply to a database. We assess the privacy risk by taking into account both the entity identification and the sensitivity of the disclosed information. Furthermore, we prove that, under some conditions, the estimated privacy risk is an upper bound on the true privacy risk. Finally, we relate our framework with the k-anonymity disclosure method. The proposed framework makes the assumptions behind k-anonymity explicit, quantifies them, and extends them in several natural directions.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133