全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate)

DOI: 10.3390/polym5010001

Keywords: biodegradation, polymers, poly(ethylene terephthalate), environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

With increasing global consumption and their natural resistance to degradation, plastic materials and their accumulation in the environment is of increasing concern. This review aims to present a general overview of the current state of knowledge in areas that relate to biodegradation of polymers, especially poly(ethylene terephthalate) (PET). This includes an outline of the problems associated with plastic pollution in the marine environment, a description of the properties, commercial manufacturing and degradability of PET, an overview of the potential for biodegradation of conventional polymers and biodegradable polymers already in production.

References

[1]  Derraik, J.G.B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 2002, 44, 842–852, doi:10.1016/S0025-326X(02)00220-5.
[2]  Pemberton, D.; Brothers, N.P.; Kirkwood, R. Entanglement of Australian fur seals in man-made debris in Tasmanian waters. Wildl. Res. 1992, 19, 151–159, doi:10.1071/WR9920151.
[3]  Sazima, I.; Gadig, O.B.F.; Namora, R.C.; Motta, F.S. Plastic debris collars on juvenile carcharhinid sharks (Rhizoprionodon lalandii) in southwest Atlantic. Mar. Pollut. Bull. 2002, 44, 1147–1149.
[4]  Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B 2009, 364, 2013–2025, doi:10.1098/rstb.2008.0265.
[5]  Azzarello, M.Y.; van Vleet, E.S. Marine birds and plastic pollution. Mar. Ecol. Prog. Ser. 1987, 37, 295–303, doi:10.3354/meps037295.
[6]  Blight, L.K.; Burger, A.E. Occurrence of plastic particles in sea-birds from the eastern north pacific. Mar. Pollut. Bull. 1997, 34, 323–325, doi:10.1016/S0025-326X(96)00095-1.
[7]  Barreiros, J.P.; Barcelos, J. Plastic ingestion by a leatherback turtle Dermochelys coriacea from the Azores (NE Atlantic). Mar. Pollut. Bull. 2001, 42, 1196–1197, doi:10.1016/S0025-326X(01)00215-6.
[8]  Baird, R.W.; Hooker, S.K. Ingestion of plastic and unusual prey by a juvenile harbour porpoise. Mar. Pollut. Bull. 2000, 40, 719–720, doi:10.1016/S0025-326X(00)00051-5.
[9]  Moore, C.J.; Moore, S.L.; Leecaster, M.K.; Weisberg, S.B. A comparison of plastic and plankton in the north Pacific central gyre. Mar. Pollut. Bull. 2001, 42, 1297–1300, doi:10.1016/S0025-326X(01)00114-X.
[10]  Mato, Y.; Isobe, T.; Takada, H.; Kanehiro, H.; Ohtake, C.; Kaminuma, T. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 2001, 35, 318–324, doi:10.1021/es0010498.
[11]  Rios, L.M.; Moore, C.; Jones, P.R. Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar. Pollut. Bull. 2007, 54, 1230–1237, doi:10.1016/j.marpolbul.2007.03.022.
[12]  Hirai, H.; Takada, H.; Ogata, Y.; Yamashita, R.; Mizukawa, K.; Saha, M.; Kwan, C.; Moore, C.; Gray, H.; Laursen, D.; Zettler, E.R.; Farrington, J.W.; Reddy, C.M.; Peacock, E.E.; Ward, M.W. Organic micropollutants in marine plastic debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 2011, 62, 1683–1692.
[13]  Schecter, A.; Colacino, J.; Haffner, D.; Patel, K.; Opel, M.; P?pke, O.; Birnbaum, L. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environ. Health Perspect. 2010, 118, 796–802.
[14]  Trudel, D.; Scheringer, M.; von Goetz, N.; Hungerbühler, K. Total consumer exposure to polybrominated diphenyl ethers in North America and Europe. Environ. Sci. Technol. 2011, 45, 2391–2397.
[15]  Chung, S.Y.; Yettella, R.R.; Kim, J.S.; Kwon, K.; Kim, M.C.; Min, D.B. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem. 2011, 129, 1420–1426.
[16]  Zhou, Q.; Gao, Y.; Xie, G. Determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector. Talanta 2011, 85, 1598–1602, doi:10.1016/j.talanta.2011.06.050.
[17]  Masó, M.; Garcés, E.; Pagès, F.; Camp, J. Drifting plastic debris as a potential vector for harmful algal bloom (HAB) species. Sci. Mar. 2003, 67, 107–111.
[18]  Wheeler, W.M. Ants carried in a floating log from the brazilian mainland to San Sebastian Island. Psyche 1916, 23, 180–183.
[19]  Censky, E.J.; Hodge, K.; Dudley, J. Over-water dispersal of lizards due to hurricanes. Nature 1998, 395, 556.
[20]  Barnes, D.K.A.; Milner, P. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar. Biol. 2005, 146, 815–825, doi:10.1007/s00227-004-1474-8.
[21]  Frost, A.; Cullen, M. Marine debris on northern New South Wales beaches (Australia): Sources and the role of beach usage. Mar. Pollut. Bull. 1997, 34, 348–352, doi:10.1016/S0025-326X(96)00149-X.
[22]  Walker, T.R.; Reid, K.; Arnould, J.P.Y.; Croxall, J.P. Marine debris surveys at Bird Island, South Georgia 1990–1995. Mar. Pollut. Bull. 1997, 34, 61–65, doi:10.1016/S0025-326X(96)00053-7.
[23]  Martinez-Ribes, L.; Basterretxea, G.; Palmer, M.; Tintoré, J. Origin and abundance of beach debris in the Balearic Islands. Sci. Mar. 2007, 71, 305–314.
[24]  Morishige, C.; Donohue, M.J.; Flint, E.; Swenson, C.; Woolaway, C. Factors affecting marine debris deposition at French Frigate Shoals, northwestern Hawaiian islands marine national monument, 1990–2006. Mar. Pollut. Bull. 2007, 54, 1162–1169, doi:10.1016/j.marpolbul.2007.04.014.
[25]  Santos, I.R.; Friedrich, A.C.; Ivar do Sul, J.A. Marine debris contamination along undeveloped tropical beaches from northeast Brazil. Environ. Monit. Assess. 2008, 148, 455–462.
[26]  Ivar do Sul, J.A.; Costa, M.F. Marine debris review for Latin America and the wider Caribbean region: From the 1970s until now, and where do we go from here? Mar. Pollut. Bull. 2007, 54, 1087–1104, doi:10.1016/j.marpolbul.2007.05.004.
[27]  Law, K.L.; Morét-Ferguson, S.; Maximenko, N.A.; Proskurowski, G.; Peacock, E.E.; Hafner, J.; Reddy, C.M. Plastic accumulation in the North Atlantic subtropical gyre. Science 2010, 329, 1185–1188.
[28]  Ryan, P.G.; Moore, C.J.; van Franeker, J.A.; Moloney, C.L. Monitroing the abundance of plastic debris in the marine environment. Philos. T. Roy. Soc. B 2009, 364, 1999–2012, doi:10.1098/rstb.2008.0207.
[29]  Yamada-Onodera, K.; Mukumoto, H.; Katsuyaya, Y.; Saiganji, A.; Tani, Y. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym. Degrad. Stabil. 2001, 72, 323–327, doi:10.1016/S0141-3910(01)00027-1.
[30]  Zheng, Y.; Yanful, E.K.; Bassi, A.S. A review of plastic waste biodegradation. Crit. Rev. Biotechnol. 2005, 25, 243–250, doi:10.1080/07388550500346359.
[31]  Marqués-Calvo, M.S.; Cerdà-Cuéllar, M.; Kint, D.P.R.; Bou, J.J.; Mu?oz-Guerra, S. Enzymatic and microbial biodegradability of poly(ethylene terephthalate) copolymers containing nitrated units. Polym. Degrad. Stabil. 2006, 91, 663–671, doi:10.1016/j.polymdegradstab.2005.05.014.
[32]  Bonhomme, S.; Cuer, A.; Delort, A.-M.; Lemaire, J.; Sancelme, M.; Scott, G. Environmental degradation of polyethylene. Polym. Degrad. Stabil. 2003, 81, 441–452, doi:10.1016/S0141-3910(03)00129-0.
[33]  Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605.
[34]  Raquez, J.-M.; Bourgeois, A.; Jacobs, H.; Degée, P.; Alexandre, M.; Dubois, P. Oxidative degradations of oxodegradable LDPE enhanced with thermoplastic pea starch: thermo-mechanical properties, morphology, and UV-ageing studies. J. Appl. Polym. Sci. 2011, 122, 489–496, doi:10.1002/app.34190.
[35]  Müller, R.-J.; Kleeberg, I.; Deckwer, W.-D. Biodegradation of polyesters containing aromatic constituents. J. Biotechnol. 2001, 86, 87–95.
[36]  Levchik, S.V.; Weil, E.D. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym. Adv. Technol. 2004, 15, 691–700, doi:10.1002/pat.526.
[37]  Bergeret, A.; Ferry, L.; Ienny, P. Influence of the fibre/matrix interface on ageing mechanisms of glass fibre reinforced thermoplastic composites (PA-6,6, PET, PBT) in a hygrothermal environment. Polym. Degrad. Stabil. 2009, 94, 1315–1324, doi:10.1016/j.polymdegradstab.2009.04.009.
[38]  Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477, doi:10.1016/j.eurpolymj.2005.02.005.
[39]  Kint, D.; Mu?oz-Guerra, S. A review on the potential biodegradability of poly(ethylene terephthalate). Polym. Int. 1999, 48, 346–352, doi:10.1002/(SICI)1097-0126(199905)48:5<346::AID-PI156>3.0.CO;2-N.
[40]  PlasticsEurope. Plastics—The Facts 2012. Available online: http://www.plasticseurope.org/Document/plastics-the-facts-2012.aspx?FolID=2 (accessed on 24 December 2012).
[41]  Sinha, V.; Patel, M.R.; Patel, J.V. PET waste management by chemical recycling: A review. J. Polym. Environ. 2010, 18, 8–25, doi:10.1007/s10924-008-0106-7.
[42]  Amari, T.; Ozaki, Y. Real-time monitoring of the initial oligomerization of bis(hydroxyethyl) terephthalate by attenuated total reflection/infrared spectroscopy and chemometrics. Macromolecules 2001, 34, 7459–7462, doi:10.1021/ma002102f.
[43]  Franklin Associates. Cradle-to-Gate Life Cycle Inventory of Nine Plastic Resins and Four Polyurethane Precursors; The Plastics Division of the American Chemistry Council: Prairie Village, KS, USA, 2011.
[44]  Williams, C.L.; Chang, C.C.; Do, P.; Nikbin, N.; Caratzoulas, S.; Vlachos, D.G.; Lobo, R.F.; Fan, W.; Dauenhauer, P.J. Cycloaddition of biomass-derived furans for catalytic production of renewable p-xylene. ACS Catal. 2012, 2, 935–939, doi:10.1021/cs300011a.
[45]  Zhang, J.; Wang, X.; Gong, J.; Gu, Z. A study on the biodegradability of polyethylene terephthalate fiber and diethylene glycol terephthalate. J. Appl. Polym. Sci. 2004, 93, 1089–1096, doi:10.1002/app.20556.
[46]  Tansel, B.; Yildiz, B.S. Goal-based waste management strategy to reduce persistence of contaminants in leachate at municipal solid waste landfills. Environ. Dev. Sustain. 2011, 13, 821–831, doi:10.1007/s10668-011-9290-z.
[47]  Massardier-Nageotte, V.; Pestre, C.; Cruard-Pardet, T.; Bayard, R. Aerobic and anerobic biodegradability of polymer films and phsyico-chemical characterization. Polym. Degrad. Stabil. 2006, 91, 620–627, doi:10.1016/j.polymdegradstab.2005.02.029.
[48]  Tollner, E.W.; Annis, P.A.; Das, K.C. Evaluation of strength properties of polypropylene-based polymers in simulated landfill and oven conditions. J. Environ. Eng. 2011, 137, 291–296.
[49]  Urase, T.; Okumura, H.; Panyosaranya, S.; Inamura, A. Emission of volatile organic compounds from solid waste disposal sites and importance of heat management. Waste Manag. Res. 2008, 26, 534–538, doi:10.1177/0734242X07084321.
[50]  Xu, S.-Y.; Zhang, H.; He, P.-J.; Shao, L.-M. Leaching behaviour of bisphenol A from municipal solid waste under landfill environment. Environ. Technol. 2011, 32, 1269–1277, doi:10.1080/09593330.2010.535175.
[51]  Svenson, A.; Sj?holm, S.; Allard, A.-S.; Kaj, L. Antiestrogenicity and estrogenicity in leachates from solid waste deposits. Environ. Toxicol. 2009, 26, 233–239.
[52]  Tsuchida, D.; Kajihara, Y.; Shimidzu, N.; Hamamura, K.; Nagase, M. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins. Waste Manag. Res. 2011, 29, 594–601, doi:10.1177/0734242X10388556.
[53]  Astrup, T.; M?ller, J.; Fruergaard, T. Incineration and co-combustion of waste: Accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 2009, 27, 789–799, doi:10.1177/0734242X09343774.
[54]  Khoo, H.H.; Tan, R.B.H. Environmental impacts of conventional plastic and bio-based carrier bags: Part 2:End-of-life options. Int. J. Life Cycle Assess. 2010, 15, 338–345.
[55]  Shen, C.; Tang, X.; Yao, J.; Shi, D.; Fang, J.; Khan, M.I.; Cheema, S.A.; Chen, Y. Levels and patterns of polycyclic aromatic hydrocabons and polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province, China. J. Hazard. Mater. 2010, 179, 197–202, doi:10.1016/j.jhazmat.2010.02.079.
[56]  Simoneit, B.R.T.; Medeiros, P.M.; Didyk, B.M. Combustion products of plastics as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 2005, 39, 6961–6970, doi:10.1021/es050767x.
[57]  Valavanidis, A.; Iliopoulos, N.; Gotsis, G.; Fiotakis, K. Persistent free-radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastics. J. Hazard. Mater. 2008, 156, 277–284, doi:10.1016/j.jhazmat.2007.12.019.
[58]  Paci, M.; La Mantia, F.P. Influence of small amounts of polyvinylchloride on the recycling of polyethyleneterephthalate. Polym. Degrad. Stabil. 1999, 63, 11–14.
[59]  Cardi, N.; Po, R.; Giannotta, G.; Occhiello, E.; Garbassi, F.; Messina, G. Chain extension of recycled poly(ethylene terephthalate) with 2,2'-Bis(2-oxazoline). J. Appl. Polym. Sci. 1993, 50, 1501–1509, doi:10.1002/app.1993.070500903.
[60]  Paci, M.; La Mantia, F.P. Competition between degradation and chain extension during processing of reclaimed poly(ethylene terephthalate). Polym. Degrad. Stabil. 1998, 61, 417–420, doi:10.1016/S0141-3910(97)00227-9.
[61]  Villain, F.; Coudane, J.; Vert, M. Thermal degradation of polyethylene terephthalate: Study of polymer stabilization. Polym. Degrad. Stabil. 1995, 49, 393–397, doi:10.1016/0141-3910(95)00121-2.
[62]  Demertzis, P.G.; Johansson, F.; Lievens, C.; Franz, R. Studies on the development of a quick inertness test procedure for multi-use PET containers—Sorption behaviour of bottle wall strips. Packag. Technol. Sci. 1997, 10, 45–58, doi:10.1002/(SICI)1099-1522(199701/02)10:1<45::AID-PTS383>3.0.CO;2-L.
[63]  Iranzo, M.; Sainz-Pardo, I.; Boluda, R.; Sánchez, J.; Mormeneo, S. The use of microorgansims in environmental remediation. Ann. Microbiol. 2001, 51, 135–143.
[64]  Head, I.M.; Swannell, R.P.J. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 1999, 10, 234–239, doi:10.1016/S0958-1669(99)80041-X.
[65]  Rosa, A.P.; Triguis, J.A. Bioremediation process on Brazil shoreline. Laboratory experiments. Environ. Sci. Pollut. Res. 2007, 14, 470–476, doi:10.1065/espr2007.02.377.
[66]  Piedad Díaz, M.; Boyd, K.G.; Grigson, S.J.W.; Burgess, J.G. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol. Bioeng. 2002, 79, 145–153, doi:10.1002/bit.10318.
[67]  Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.; Andersen, G.L.; Piceno, Y.M.; Singh, N.; Jansson, J.K.; Probst, A.; Borglin, S.E.; Fortney, J.L.; Stringfellow, W.T.; Bill, M.; Conrad, M.E.; Tom, L.M.; Chavarria, K.L.; Alusi, T.R.; Lamendella, R.; Joyner, D.C.; Spier, C.; Baelum, J.; Auer, M.; Zemla, M.L.; Chakraborty, R.; Sonnenthal, E.L.; D'haeseleer, P.; Holman, H.-Y.N.; Osman, S.; Lu, Z.; van Nostrand, J.D.; Deng, Y.; Zhou, J.; Mason, O.U. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 2010, 330, 204–208.
[68]  Luigi, M.; Gaetano, D.M.; Vivia, B.; Angelina, L.G. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 2007, 54, 1754–1761, doi:10.1016/j.marpolbul.2007.07.011.
[69]  De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar. Biotechnol. 2008, 10, 471–477, doi:10.1007/s10126-008-9083-z.
[70]  Takeuchi, M.; Kawahata, H.; Gupta, L.P.; Kita, N.; Morishita, Y.; Ono, Y.; Komai, T. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 2007, 127, 434–442.
[71]  Pieper, D.H.; Reineke, W. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 2000, 11, 262–270.
[72]  Müller, R.-J.; Schrader, H.; Profe, J.; Dresler, K.; Deckwer, W.-D. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Comm. 2005, 26, 1400–1405, doi:10.1002/marc.200500410.
[73]  Herzog, K.; Müller, R.-J.; Deckwer, W.-D. Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym. Degrad. Stabil. 2006, 91, 2486–2498, doi:10.1016/j.polymdegradstab.2006.03.005.
[74]  Artham, T.; Doble, M. Biodegradation of physicochemically treated polycarbonate by fungi. Biomacromolecules 2009, 11, 20–28, doi:10.1021/bm9008099.
[75]  Kondratowicz, F.L.; Ukielski, R. Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polym. Degrad. Stabil. 2009, 94, 375–382, doi:10.1016/j.polymdegradstab.2008.12.001.
[76]  Marten, E.; Müller, R.-J.; Deckwer, W.-D. Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym. Degrad. Stabil. 2003, 80, 485–501, doi:10.1016/S0141-3910(03)00032-6.
[77]  Asakuma, Y.; Nakagawa, K.; Maeda, K.; Fukui, K. Theoretical study of the transesterification reaction of polethylene terephthalate under basic conditions. Polym. Degrad. Stabil. 2009, 94, 240–245.
[78]  Mueller, R.-J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling. Process Biochem. 2006, 41, 2124–2128, doi:10.1016/j.procbio.2006.05.018.
[79]  La Mantia, F.P.; Botta, L.; Morreale, M.; Scaffaro, R. Effects of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polym. Degrad. Stabil. 2012, 97, 21–24.
[80]  Rwei, S.-P.; Lin, W.-P.; Wang, J.-F. Synthesis and characterization of biodegradable and weather-durable PET/PEG/NDC copolymers. Colloid Polym. Sci. 2012, 290, 1381–1392.
[81]  Amass, W.; Amass, A.; Tighe, B. A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89–144, doi:10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F.
[82]  Guo, W.; Tao, J.; Yang, C.; Song, C.; Geng, W.; Li, Q.; Wang, Y.; Kong, M.; Wang, S. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers. PLoS ONE 2012, 7.
[83]  Russo, M.A.L.; O'Sullivan, C.; Rounsefell, B.; Halley, P.J.; Truss, R.; Clarke, W.P. The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresour. Technol. 2009, 100, 1705–1710, doi:10.1016/j.biortech.2008.09.026.
[84]  Brandelero, R.P.H.; Grossmann, M.V.E.; Yamashita, F. Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydr. Polym. 2011, 86, 1344–1350, doi:10.1016/j.carbpol.2011.06.045.
[85]  Kim, S.H.; Tan, J.P.K.; Fukushima, K.; Nederberg, F.; Yang, Y.Y.; Waymouth, R.M.; Hedrick, J.L. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers. Biomaterials 2011, 32, 5505–5514, doi:10.1016/j.biomaterials.2011.04.017.
[86]  Canché-Escamilla, G.; Canché-Canché, M.; Duarte-Aranda, S.; Cáceres-Farfán, M.; Borges-Argáez, R. Mechanical properties and biodegradation of thermoplastic starches obtained from grafted starches with acrylics. Carbohydr. Polym. 2011, 86, 1501–1508, doi:10.1016/j.carbpol.2011.06.052.
[87]  Nampoothiri, K.M.; Nair, N.R.; John, R.P. An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010, 101, 8493–8501, doi:10.1016/j.biortech.2010.05.092.
[88]  Ye, R.-R.; Wang, Z.-Y.; Wang, Q.-F.; Yang, K.; Luo, S.-H. Synthesis of biodegradable material poly(lactic acid-co-aspartic acid) via direct melt polycondensation and its characterization. J. Appl. Polym. Sci. 2011, 121, 3662–3668.
[89]  Neppalli, R.; Causin, V.; Marega, C.; Saini, R.; Mba, M.; Marigo, A. Structure, morphology and biodegradability of poly(ε-caprolactone)-based nanocomposites. Polym. Eng. Sci. 2011, 51, 1489–1496.
[90]  Verbeek, C.; van den Berg, L.E. Extrusion processing and properties of protein-based thermoplastics. Macromol. Mater. Eng. 2010, 295, 10–21, doi:10.1002/mame.200900167.
[91]  Puls, J.; Wilson, S.A.; H?lter, D. Degradation of cellulose acetate-based materials: A review. J. Polym. Environ. 2011, 19, 152–165, doi:10.1007/s10924-010-0258-0.
[92]  Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A.; Yarmand, M.S. Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. 2011, 127, 1496–1502, doi:10.1016/j.foodchem.2011.02.003.
[93]  Nitschke, M.; Costa, S.G.V.A.O.; Contiero, J. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem. 2011, 46, 621–630, doi:10.1016/j.procbio.2010.12.012.
[94]  Chen, G.-Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446.
[95]  Akaraonye, E.; Keshavarz, T.; Roy, I. Production of polyhydroxyalkanoates: The future green materials of choice. J. Chem. Technol. Biotechnol. 2010, 85, 732–743, doi:10.1002/jctb.2392.
[96]  Kunasundari, B.; Sudesh, K. Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym. Lett. 2011, 5, 620–634, doi:10.3144/expresspolymlett.2011.60.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413