全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Ring-Opening Polymerization—An Introductory Review

DOI: 10.3390/polym5020361

Keywords: ring-opening polymerization, RROP, CROP, AROP, ROMP

Full-Text   Cite this paper   Add to My Lib

Abstract:

This short, introductory review covers the still rapidly growing and industrially important field of ring opening polymerization (ROP). The review is organized according to mechanism (radical ROP (RROP), cationic ROP (CROP), anionic ROP (AROP) and ring-opening metathesis polymerization (ROMP)) rather than monomer classes. Nevertheless, the different groups of cyclic monomers are considered (olefins, ethers, thioethers, amines, lactones, thiolactones, lactams, disulfides, anhydrides, carbonates, silicones, phosphazenes and phosphonites) and the mechanisms by which they can be polymerized involving a ring-opening polymerization. Literature up to 2012 has been considered but the citations selected refer to detailed reviews and key papers, describing not only the latest developments but also the evolution of the current state of the art.

References

[1]  Duda, A.; Kowalski, A. Thermodynamics and Kinetics of Ring Opening Polymerisation. In Handbook of Ring Opening Polymerisation; Dubois, P., Coulembier, O., Raquez, J-M., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2009; pp. 1–51.
[2]  Kubisa, P. Cationic Polymerization of Heterocyclics. In Cationic Polymerizations; Matyjaszewski, K., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 437–553.
[3]  Ivin, K.J. Polymer Handbook, 2nd; Brandrup, J., Immergut, E.H., Eds.; John Wiley & Sons: New York, NY, USA, 1975; p. 8.
[4]  Brunelle, D.J. Introduction. In Ring-Opening Polymerization; Hanser Publishers: Munich, Germany, 1993; pp. 2–4.
[5]  Kubisa, P.; Vairon, J.P. Cationic Ring Opening Polymerization of Cyclic Acetals. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., M?ller, M., Eds.; Elsevier BV: Amsterdam, the Netherlands, 2012; Volume 4, pp. 183–211.
[6]  Endo, T. General Mechanism in Ring-Opening Polymerization. In Handbook of Ring-Opening Polymerization; Dubois, P., Coulembier, O., Raquez, J.-M., Eds.; Wiley-VCH: Weinheim, Germany, 2009; pp. 53–63.
[7]  Hall, H.K.; Ykman, P. Addition polymerization of cyclobutene and bicyclobutane monomers. J. Polym. Sci. Macromol. Rev. 1976, 11, 1–45, doi:10.1002/pol.1976.230110101.
[8]  Sarker, P.; Ebdon, J.R.; Rimmer, S. Branched oligovinylcyclopropane by transfer to allylic carbonate oligomers via radical ring-opening polymerization. Macromol. Rapid Commun. 2006, 27, 2007–2013.
[9]  Singha, N.K.; Kavitha, A.; Sarker, P.; Rimmer, S. Copper Mediated Controlled Radical Ring-Opening Polymerization (RROP) of Vinylcycloalkane. Chem. Commun. 2008, 3049–3051.
[10]  Sanda, F.; Endo, T. Radical ring-opening polymerization. J. Polym. Sci. Polym. Chem. 2001, 39, 265–276, doi:10.1002/1099-0518(20010115)39:2<265::AID-POLA20>3.0.CO;2-D.
[11]  Moszner, N.; Zeuner, F.; V?lkel, T.; Rheinberger, V. synthesis and polymerization of vinylcyclopropanes. Macromol. Chem. Phys. 1999, 200, 2173–2187.
[12]  Cho, I.; Kim, J.-B. Exploratory ring-opening polymerization. XIII, Radical ring-opening polymerization of 2-phenyl-3-vinyloxirane: A C–C-Bond scission polymerization of the epoxide ring. J. Polym. Sci. Polym. Lett. 1983, 21, 433–436.
[13]  Ochiai, B.; Endo, T. Computational evaluation of radical ring-opening polymerization. J. Polym. Sci. Polym. Chem. 2007, 45, 2827–2834, doi:10.1002/pola.22039.
[14]  Endo, T.; Kanda, N. Syntheses of 2-phenyl-3-vinyloxirane derivatives that undergo radical ring-opening polymerization. J. Polym. Sci. Polym. Chem. 1985, 23, 1931–1938, doi:10.1002/pol.1985.170230708.
[15]  Hiraguri, Y.; Endo, T. Synthesis and radical ring-opening polymerization of 1,2-dicarbomethoxy-3-vinylcyclobutane. J. Polym. Sci. Polym. Lett. 1989, 27, 333–337.
[16]  Bailey, W.J. Ring-Opening Polymerization. In Comprehensive Polymer Science; Allen, G., Bevington, A.G., Eds.; Pergamon Press: Oxford, UK, 1989; Volume 3, pp. 283–320.
[17]  Hiraguri, Y.; Endo, T. Synthesis and radical ring-opening polymerization of 2,2-diphenyl-4-methylene-5-methyl-l,3-dioxolane, alternating copolymer of propylene, and carbon monoxide. J. Polym. Sci. Polym. Chem. 1992, 30, 689–690, doi:10.1002/pola.1992.080300422.
[18]  Evans, R.A.; Rizzardo, E. Free-Radical ring-opening polymerization of cyclic allylic sulfides. Macromolecules 1996, 29, 6983–6989, doi:10.1021/ma960573p.
[19]  Angermann, J.; Burtscher, P.; Fischer, U.K.; Moszner, N.; Rheinberger, V. Dental Materials Based on Multicyclic Allyl Sulfides. Eur. Patent 1825843 Al, 29 August 2007.
[20]  Luck, R.M.; Sadhir, R.K. Monomers that Expand During Polymerization. In Expanding Monomers; Sadhir, R.K., Luck, R.M., Eds.; CRC-Press: Boca Raton, FL, USA, 1992; pp. 21–61.
[21]  Endo, T.; Bailey, W.J. Synthesis and radical ring-opening polymerization of spiro orthocarbonates. J. Polym. Sci. Polym. Chem. 1975, 13, 2525–2530, doi:10.1002/pol.1975.170131110.
[22]  Tagoshi, H.; Endo, T. Syntheses of polymers that undergo no shrinkage on crosslinking. J. Polym. Sci. Polym. Lett. 1988, 26, 77–81, doi:10.1002/pol.1988.140260203.
[23]  Bailey, W.J.; Zheng, Z.-F. Synthesis and double ring-opening polymerization of cyclic ketals of γ-methylenelactones. J. Polym. Sci. Polym. Chem. 1991, 29, 437–446, doi:10.1002/pola.1991.080290317.
[24]  Endo, T.; Bailey, W.J. Synthesis and radical ring-opening polymerization of 2-Methylene-l,4,6-trioxaspiro[4,4]nonane. J. Polym. Sci. Polym. Lett. 1980, 18, 25–27, doi:10.1002/pol.1980.130180106.
[25]  Agarwal, S. Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem. 2010, 1, 953–964, doi:10.1039/c0py00040j.
[26]  Ren, L.; Agarwal, S. Synthesis, characterization, and properties evaluation of poly[(N-isopropylacrylamide)-co-ester]s. Macromol. Chem. Phys. 2007, 208, 245–253, doi:10.1002/macp.200600484.
[27]  Agarwal, S.; Ren, L.; Kissel, T.; Bege, N. Synthetic route and characterization of main chain ester-containing hydrolytically degradable poly(N,N-dimethylaminoethylmethacrylate)-Based polycations. Macromol. Chem. Phys. 2010, 211, 905–915, doi:10.1002/macp.200900579.
[28]  Agarwal, S.; Ren, L. Polycaprolactone-based novel degradable ionomers by radical ring-opening polymerization of 2-methylene-1,3-dioxepane. Macromolecules 2009, 42, 1574–1579, doi:10.1021/ma802615f.
[29]  Grabe, N.; Zhang, Y.; Agarwal, S. Degradable elastomeric block copolymers based on polycaprolactone by free-radical chemistry. Macromol. Chem. Phys. 2011, 212, 1327–1334, doi:10.1002/macp.201100031.
[30]  Zhang, Y.; Dafeng, C.; Zheng, M.; Kissel, T.; Agarwal, S. Biocompatible and degradable poly(2-hydroxyethyl methacrylate) based polymers for biomedical applications. Polym. Chem. 2012, 3, 2752–2759, doi:10.1039/c2py20403g.
[31]  Zhang, Y.; Zheng, M.; Kissel, T.; Agarwal, S. Design and biophysical characterization of bioresponsive degradable poly(dimethylaminoethyl methacrylate) based polymers for in vitro dna transfection. Biomacromolecules 2012, 13, 313–322, doi:10.1021/bm2015174.
[32]  Jin, Q.; Maji, S.; Agarwal, S. Novel amphiphilic, biodegradable, biocompatible, crosslinkable copolymers: Synthesis, characterization and drug delivery applications. Polym. Chem. 2012, 3, 2785–2793, doi:10.1039/c2py20364b.
[33]  Undin, J.; Illanes, T.; Finne-Wistrand, A.; Albertsson, A.-C. Random introduction of degradable linkages into functional vinyl polymers by radical ring-opening polymerization, tailored for soft tissue engineering. Polym. Chem. 2012, 3, 1260–1266, doi:10.1039/c2py20034a.
[34]  Plikk, P.; Tyson, T.; Finne-Winstrand, A.; Albertsson, A.-C. Mapping the characteristics of radical ring-opening polymerization of a cyclic ketene acetal towards the creation of a functional polyester. J. Polym. Sci. A Polym. Chem. 2009, 47, 4587–4601, doi:10.1002/pola.23511.
[35]  Wei, Y.; Connors, E.J.; Jia, X.; Wang, J. Controlled free radical ring-opening polymerization and chain extension of the living polymer. J. Polym. Sci. A Polym. Chem. 1998, 36, 761–771, doi:10.1002/(SICI)1099-0518(19980415)36:5<761::AID-POLA9>3.0.CO;2-O.
[36]  He, T.; Zou, Y.-F.; Pan, C.-Y. Controlled/“Living” radikal ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane based on reversible addition fragmentation chain transfer mechanism. Polym. J. 2002, 34, 138–143, doi:10.1295/polymj.34.138.
[37]  Yuan, G.-Y.; Pan, C.-Y.; Tang, B.-Z. “Living” free radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxopane using the atom transfer radical polymerization method. Macromolecules 2001, 34, 211–214, doi:10.1021/ma0004099.
[38]  Penczek, S.; Kubisa, P. Cationic Ring-Opening Polymerization. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; pp. 13–86.
[39]  Vairon, J.-P.; Spassky, N. Industrial Cationic Polymerization: An Overview. In Cationic Polymerizations; Matyjaszewski, K., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 683–750.
[40]  Motokucho, S.; Sudo, A.; Endo, T. Living cationic-ring-opening polymerization of five-membered cyclic dithiocarbonate controlled by neighboring group participation of carbamate group. J. Polym. Sci. Polym. Chem. 2007, 45, 4459–4464, doi:10.1002/pola.22206.
[41]  Suzuki, A.; Sudo, A.; Endo, T. Cationic ring-opening-polymerization of 3-isochromanone through the formation of benzyl cationic intermediate and its friedel-crafts reaction. J. Polym. Sci. Polym. Chem. 2009, 47, 2214–2218, doi:10.1002/pola.23318.
[42]  Firat, Y.; Jones, F.R.; Plesch, P.H.; Westermann, P.H. The propagating species in the polymerization of 1,3-dioxacycloalkanes by percholoric acid. Makromol. Chem. Suppl. 1975, 1, 203–216, doi:10.1002/macp.1975.020011975113.
[43]  Jaacks, V.; Boehlke, K.; Eberius, E. A method of determining the active centers in cationic polymerization of dioxolane, trioxane and formaldehyde. Makromol. Chem. 1968, 118, 354–360, doi:10.1002/macp.1968.021180122.
[44]  Brzezinska, K.; Chwialkowska, W.; Kubisa, P.; Matyjaszewski, K.; Penczek, S. Ion trapping in cationic polymerizations. Makromol. Chem. 1977, 178, 2491–2494, doi:10.1002/macp.1977.021780836.
[45]  Penczek, S. Cationic Ring-Opening Polymerization(CROP) major mechanistic phenomena. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1919–1933.
[46]  Bednarek, M.; Kubisa, P.; Penczek, S. Coexistence of activated monomer and active chain end mechanisms in cationic copolymerization of tetrahydrofuran with ethylene oxide. Macromolecules 1999, 32, 5257–5263, doi:10.1021/ma9900939.
[47]  Bednarek, M.; Brzezinska, K.; Stasinski, J.; Kubisa, P.; Penczek, S. Heteropolyacids—New efficient initiators of cationic polymerization. Makromol. Chem. 1989, 190, 929–938, doi:10.1002/macp.1989.021900502.
[48]  Ryu, C.Y.; Spencer, M.J.; Crivello, J.V. Involvement of supramolecular complexes in the capture and release of protonic acids during the cationic ring-opening polymerization of epoxides. Macromolecules 2012, 45, 2233–2241, doi:10.1021/ma202618r.
[49]  Slomkowski, S.; Penczek, S. Kinetics of hydride transfer from 1,3-dioxolane to the free triphenymethyl cation preceeding the true initiation. Chem. Commun. l970, 1347–1348.
[50]  Afshar-Taromi, F.; Scheer, M.; Rempp, P.; Franta, E. A new efficient cationic initiator for the polymerization of tetrahydrofuran. Makromol. Chem. 1978, 179, 849–853, doi:10.1002/macp.1978.021790331.
[51]  Szymanski, R.; Penczek, S. Dynamic NMR studies of equilibria involving active species in the polymerization of cyclic acetals. Reaction of methoxycarbenium ion (CH3OCH2)+ with 5, 6 and 7 membered cyclic acetals. Makromol. Chem. 1982, 183, 1587–1602.
[52]  Matyjaszewski, K.; Penczek, S. The macroester-macroion equilibrium in the cationic polymerization of THF observed directly by 300 MHz H NMR. J. Polym. Sci. Polym. Chem. 1974, 12, 1905–1912, doi:10.1002/pol.1974.170120905.
[53]  Goethals, E.J.; Drijvers, W. Cationic polymerization of cyclic sulfides. IV. Determination of the structure and concentration of the propagating species during the polymerization of 3,3-dimethoxythietane by 300 MHz NMR spectroscopy. Makromol. Chem. 1973, 165, 329–333.
[54]  Goethals, E.J.; Schacht, E.H. Cationic polymerization of cyclic imines. II. 300 MHz 1H NMR of the structure and concentration of propagating species during the polymerization of 1,3,3-trimethylazetidine. J. Polym. Sci. Polym. Lett. Ed. l973, 11, 497–501.
[55]  Li, Y.; Yu, B. Glycolization initiated cationic ring-opening polymerization of tetrahydrofuran to prepare neoglycolpolymers. Chem. Commun. 2010, 46, 6060–6062.
[56]  Saegusa, T.; Kobayashi, S.; Yamada, A. Kinetics of the isomerization polymerization of 2-methyl-2-oxazoline by benzyl chloride and bromide initiators. Makromol. Chem. 1976, 177, 2271–2283.
[57]  Smith, S.; Hubin, A.J. Preparation and chemistry of dicationically active polymers of tetrahydrofuran. J. Macromol. Sci. Chem. 1973, A7, 1399–1413.
[58]  Kobayashi, S.; Danda, H.; Saegusa, T. Superacids and their derivatives. IV. Kinetic studies on the ring-opening polymerization of tetrahydrofuran initiated with ethyl trifluoromethanesulfonate by means of 19F and 1H nuclear magnetic resonance spectroscopy. Evidence for the oxonium-ester equilibrium of the propagating species. Macromolecules 1974, 7, 415–420.
[59]  Matyjaszewski, K.; Kubisa, P.; Penczek, S. Ion ? Ester equilibria in the living cationic polymerization of tetrahydrofuran. J. Polym. Sci. Polym. Chem. 1974, 12, 1333–1336.
[60]  Kennedy, J.P.; Marechal, E. Carbocationic. Polymerization; John Wiley & Sons: New York, NY, USA, 1982; pp. 95–97.
[61]  Hoene, R.; Reichert, K.-H. Elucidation of the initation step in the cationic polymerization of tetrahydrofuran with phospherous pentafluoride. Makromol. Chem. 1976, 177, 3545–3570, doi:10.1002/macp.1976.021771208.
[62]  Crivello, J.V.; Lam, J.H.W. Diaryliodonium salts. A new class of photoinitiators for cationic polymerization. Macromolecules 1977, 10, 1307–1315.
[63]  Sangermano, M.; Crivello, J.V. Visible and long-wavelength cationic photopolymerization. ACS Symp. Ser. 2003, 847, 242–252.
[64]  Crivello, J.V. Cationic photopolymerization of alkyl glycidyl ethers. J. Polym. Sci. Polym. Chem. 2006, 44, 3036–3052, doi:10.1002/pola.21419.
[65]  Putzien, S.; Louis, E.; Nuyken, O.; Crivello, J.V.; Kühn, F.E. UV curing of epoxy functional hybrid silicones. J. Appl. Polym. Sci. 2012, 126, 1188–1197.
[66]  Anger, C.A.; Hinelang, K.; Helbich, T.; Halbach, T.; Stohrer, J.; Rieger, B. Photoinduced polysiloxane architechtures from spirosiloxane precursors via intramolecular hydrosilylation. ACS Macro Lett. 2012, 1, 1204–1207.
[67]  Hoefler, T.; Griesser, M.; Gruber, G.; Jakopic, G.; Trimmel, G.; Kern, W. Photo fries rearrangement in polymer media: An investigation on fully aromatic esters containing the naphthyl chromophore. Macromol. Chem. Phys. 2008, 209, 488–498.
[68]  Buijsen, P.F.A.; Hacker, N.P. Photochemical reaction of onium salts with N,N-Dimethylaniline; evidence for photo induced electron transfer. Tetrahedron Lett. 1993, 34, 1557–1560.
[69]  Jungermann, S.; Riegel, N.; Mueller, D.; Meerholz, K.; Nuyken, O. Novel photo-cross-linkable hole transporting polymers: synthesis, characterization and application in organic light emitting diodes. Macromolecules 2006, 39, 8911–8919.
[70]  Schelter, J.; Mielke, G.F.; Koehnen, A.; Wies, J.; Koeber, S.; Nuyken, O.; Meerholz, K. Novel non-conjugated main-chain hole-transporting polymers for organic electronics application. Macromol. Rapid. Commun. 2010, 31, 1560–1567.
[71]  Müller, C.D.; Falcon, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multi-colour organic light emitting displays by solution processing. Nature 2003, 421, 829–833.
[72]  Feser, S.; Meerholz, K. Investigation of the photocrosslinking mechanism in oxetane functionalized semicunductors. Chem. Mater. 2011, 23, 5001–5005, doi:10.1021/cm202327c.
[73]  Makino, A.; Kobayashi, S. Chemistry of 2-oxazolines: A crossing of the cationic ring-opening polymerization and enzymatic ring-opening polyaddition. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1251–1270, doi:10.1002/pola.23906.
[74]  Novel polyoxazolines polymer drug delivery platform. Available online: http://www.baypat.de/en/industry/technology-offers.html?tech_ang=1684 (accessed on 17 April 2013).
[75]  Kourti, M.-E.; Vougioukalakis, G.C.; Hadjichristidis, N.; Pitsikalis, M. Metallocene-mediated cationic-ring-opening polymerization of 2-methyl and 2-phenyl-oxazoline. J. Polym. Sci. Polym. Chem. 2011, 49, 2520–2527.
[76]  Saegusa, T.; Matsumoto, S. Determination of concentration of propagating species in cationic polymerization of tetrahydrofuran. J. Polym. Sci. A 1968, 6, 1559–1565.
[77]  Saegusa, T.; Kobayashi, S. Cationic ring-opening polymerization of cyclic ethers. Progr. Polym. Sci. Jpn. 1973, 4, 106–151.
[78]  Matyjaszewski, K.; Penczek, S. Ion trapping in cationic polymerization. II, Relative rates of trapping and relative chemical shifts of structural differing phosphines as trapping agents. Makromol. Chem. 1981, 182, 1735–1742.
[79]  Brzezinska, R.; Szymanski, P.; Kubisa, P.; Penczek, S. Activated monomer mechanism in cationic polymerization. Ethylenoxide, formulation of mechanism. Makromol. Chem. Rapid Commun. 1986, 7, 1–4.
[80]  Penczek, S.; Kubisa, P.; Szymanski, R. Activated monomer propagation in cationic polymerization. Makromol. Chem. Macromol. Symp. 1986, 3, 203–220, doi:10.1002/masy.19860030116.
[81]  Qayouh, H.; Lahcini, M.; Six, J.-L.; Kricheldorf, H.R. Polymerizations of hexamethylcyclosiloxane catalyzed by metal sulfonate/acid chloride combinations. J. Appl. Polym. Sci. 2012, 124, 4114.
[82]  Sauvet, G.; Lebrun, J.J.; Sigwalt, P. Cationic Polymerization of Cyclosilanes: The Various Processes Involved. In Cationic Polymerization and Related Processes; Goethals, E.J., Ed.; Academic Press: London, UK, 1984; pp. 237–251.
[83]  Wilczek, L.; Chojnowski, J. Acidolytic ring-opening of cyclic siloxane and acetal monomers. Role of hydrogen bonding in cationic polymerization initiated with protonic acids. Macromolecules 1981, 14, 9–17.
[84]  Richards, D.H.; Kingston, S.B.; Souel, T. Block copolymer synthesis by reaction of living polystyrene with living polytetrahydrofuran. Polymer 1978, 19, 68–72.
[85]  Nagai, D.; Sato, M.; Ochai, B.; Endo, T. Synthesis and properties of the polythiourethanes obtained by the cationic ring-opening polymerization of cyclic thiourethanes. J. Polym. Sci. Polym. Chem. 2006, 44, 4795–4803.
[86]  Krieg, A.; Weber, C.; Hoogenboom, R.; Becer, C.R.; Schubert, U.S. Block Copolymers of Poly (2-Oxazoline)s and Poly (Methyl) Acrylates; A Crossover between Cationic Ring-Opening Polymerization (CROP) and Reversible Addition-Fragmentation Chain Transfer (RAFT). ACS Macro Lett. 2012, 1, 776–779.
[87]  Lefevre, N.; Fustin, C.-A.; Hoogenboom, R.; Schubert, U.S.; Gohy, J.-F. Nanostructured surfaces from block copoly(2-oxazoline)s prepared by microwave-assisted cationic ring-opening polymerization. Polym. Prepr. 2008, 49, 949–950.
[88]  Paulus, R.M.; Erdmenger, T.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S. Scale-Up of microwave-assisted polymerizations in continuous flow mode: Cationic ring-opening polymerization of 2-Ethyl-2-oxazoline. Macromol. Rapid Commun. 2007, 28, 484–491.
[89]  Hoogenboom, R. A polymer class with numerous potential applications. Angew. Chem. Int. Ed. 2009, 48, 7978–7994.
[90]  Krause, J.O.; Zarka, M.T.; Anders, U.; Weberskirch, R.; Nuyken, O.; Buchmeiser, M.R. Simple synthesis of Poly(acetylene) latex particles in aqueous media. Angew. Chem. Int. Ed. 2003, 42, 5965–5969.
[91]  Gall, B.; Bortenschlager, M.; Nuyken, O.; Weberskirch, R. Cascade reaction in polymeric nanoreactors. Mono(Rh) and Bimetallic(Rh, Ir) micellar catalysis in the hydroformylation of octene. Macromol. Chem. Phys. 2008, 209, 1152–1159.
[92]  Sch?nfelder, D.; Fischer, K.; Schmidt, M.; Nuyken, O.; Weberskirch, R. Poly(2-oxazoline) functionalized with palladium carbene complexes: soluble amphiphilic polymer supports for C–C coupling reactions in water. Macromolecules 2005, 8, 254–262.
[93]  Slomkowski, S.; Duda, A. Anionic Ring-Opening Polymerization. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; pp. 88–128.
[94]  Ostrovskii, V.E.; Khodzhemirov, V.A.; Barkova, A.P. Heat of ethylene oxide polymerization and kinetics of polymerization on solid potassium hydroxide. Dokl. Akad. Nauk. SSSR 1970, 191, 1095–1098.
[95]  Nicco, A.; Boucheron, R.G. Anionic polymerization of thiirane. Eur. Polym. J. 1970, 6, 1477–1490.
[96]  Richards, D.H.; Eastmond, G.C.; Stewart, M.J. Anionically Prepared Telechelic Polymers. In Telechelic Polymers: Synthesis and Applications; Goethals, E.J., Ed.; CRC Press: Boca Rotan, FL, USA, 1989; p. 43.
[97]  Duda, A.; Penczek, S. Thermodynamics of L-Lactide polymerization. Equilibium monomer concentration. Macromolecules 1990, 23, 1636–1639.
[98]  Lebedev, B.V.; Mukhina, N.N.; Kulagina, T.G. Thermodynamics of Poly(dimethyldisiloxane) in the Range of 0–350 K. Vysokomol. Soed. Ser. A 1978, 20, 1297–1303.
[99]  Morton, M.; Kammereck, R.F. Nucleophilic substitution at bivalent sulfur, reaction of alkyllithium with cyclic sulfides. J. Am. Chem. Soc. 1970, 92, 3217–3218.
[100]  Richards, D.N.; Szwarc, M. Block polymers of ethylene oxide and its analogs with styrene. Trans. Faraday Soc. 1959, 55, 1644–1650.
[101]  Boileau, S.; Champetier, G.; Sigwalt, P. Initiation mechanism for the polymerization of episulfides by sodium naphthalene. J. Polym. Sci. Polym. Symp. 1967, 16, 3021–3031.
[102]  Boileau, S. Use of cryptates in anionic polymerization of heterocyclic compounds. ACS Symp. Ser. 1981, 166, 283–305.
[103]  Deffieux, A.; Boileau, S. Anionic polymerization of heterocyclic compounds. Polymer 1977, 18, 1047–1050.
[104]  Hofman, A.; Slomkowski, S.; Penczek, S. Structure and active centers and mechanism of the anionic polymerization of lactones. Makromol. Chem. 1984, 185, 91–101.
[105]  Koinuma, H.; Naito, K.; Hirai, H. Anionic polymerization of oxiranes and cyclic siloxanes initiated with potassium salt-crown ether systems. Makromol. Chem. 1982, 183, 1383–1392.
[106]  Sosnowski, S.; Slomkowski, S.; Penczek, S. Kinetics of ε-caprolactone polymerization and formation of cyclic monomers. Makromol. Chem. 1983, 184, 2159–2171.
[107]  Morton, M.; Kammereck, R.F.; Fetters, L.J. Polymerization and block copolymerization of cyclic sulfides. Br. Polym. J. 1971, 3, 120–128.
[108]  Stehlicek, J.; Labsky, J.; Sebenda, J. Alkaline polymerization of 6-caprolactam XXV. The effect of structure of the acyl on polymerization activated by acylcaprolactams or diacrylamines. Collect. Czech. Chem. Commun. 1987, 32, 545–557.
[109]  Hamitou, A.; Ouhadi, T.; Jerome, R.; Teyssie, P. Soluble bimetallic μ-oxoalkoxides: VII. Characteristics and mechanism of ring-opening polymerization of lactones. J. Polym. Sci. Polym. Chem. 1977, 15, 865–873.
[110]  Vion, J.M.; Jerome, R.; Teyssie, P.; Aubin, H.; Prud’homme, R. Synthesis and characterization and miscibility of caprolactone copolymers. Macromolecules 1986, 19, 1828–1838.
[111]  Hofman, A.; Slomkowski, S.; Penczek, S. Polymerization of ε-caprolactone with kinetic suppression of macrocycles. Makromol. Chem. Rapid Commun. 1987, 8, 387–391.
[112]  Duda, A.; Florjanczyk, Z.; Hofman, A.; Slomkowski, S.; Penczek, S. Living pseudoanionic polymerization of ε-caprolactone. Poly(caprolactone) free of cyclics and with controlled end groups. Macromolecules 1990, 23, 1640–1646.
[113]  Inoue, S.; Tsukuma, I.; Kawaguchi, M.; Tsurata, T. Synthesis of optically active polymers by asymmetric catalysts VI. Behavior of organozinc catalyst systems in the stereoselective polymerization of propylene oxide. Makromol. Chem. 1967, 103, 151–163.
[114]  Sosnowski, S.; Duda, A.; Slomkowski, S.; Penczek, S. Determination of the structure of active centers in the anionic polymerization by phosphorus-31 NMR, introducing a phosphorus containing end group. Makromol. Chem. Rapid. Commun. 1984, 5, 551–557, doi:10.1002/marc.1984.030050912.
[115]  Michalski, J.; Skowronska, A.; Bodalski, R. Mechanisms of Reactions of Phosphorus Compounds. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J.G., Quin, L.D., Eds.; Wiley VCH: New York, NY, USA, 1987; p. 255.
[116]  Sebenda, J. Anionic Ring-Opening Polymerization: Lactams. In Comprehensive Polymer Science; Allen, G., Bevington, J.C., Eds.; Pergamon Press: Oxford, UK, 1989; Volume 3, pp. 511–530.
[117]  Yu, G.-E.; Heatley, F.; Booth, C.; Blease, T.G. Anionic polymerization of propylene oxide; isomerization of allylic ether to propenyl ether end groups. J. Polym. Sci. A Polym. Chem. 1994, 32, 1131–1135.
[118]  Kricheldorf, H.R. Anionic Ring-Opening Polymerization: N-Carboxyanhydrides. In Comprehensive Polymer Science; Allen, G., Bevington, J.C., Eds.; Pergamon Press: Oxford, UK, 1989; Volume 3, pp. 531–551.
[119]  Duda, A.; Kowalski, A. Thermodynamics and Kinetics of Ring-Opening Polymerization. In Handbook of Ring-Opening Polymerization; Dubois, P., Coulombier, O., Raquez, J.-M., Eds.; Wiley-VCH: Weinheim, Germany, 2009; p. 8.
[120]  Ackermann, J.; Damroth, V. Chemie und Technologie der Silikone II. Herstellung und Verwendung von Siliconpolymeren. Chemie in unserer Zeit 1989, 23, 86–99, doi:10.1002/ciuz.19890230304.
[121]  Choijnowski, J. Kinetically controlled ring-opening polymerization. J. Inorg. Organomet. Polym. 1991, 1, 299–323, doi:10.1007/BF00702495.
[122]  Boileau, S. Anionic Ring-Opening Polymerization: Epoxides and Episulfides. In Comprehensive Polymer Science; Allen, G., Bevington, J.C., Eds.; Pergamon Press: Oxford, UK, 1989; Volume 3, pp. 467–487.
[123]  Anderson, A.N.; Merckling, N.G. Polymeric Bicyclo[2.2.1]hept-2-ene. U.S. Patent 2,721,189, 18 October 1955.
[124]  Eleuterio, H.S. Polymerization of Cyclic Olefins. U.S. Patent 3,074,918, 22 January 1967.
[125]  Ivin, K.J.; Mol, J.C. Metathesis and Metathesis Polymerization; Academic Press: San Diego, CA, USA, 1997.
[126]  Buchmeiser, M.R. Homogeneous metathesis polymerization by well-defined group VI and Group VII transition metal alkylidenes: Fundamentals and applications in the preparation of advanced materials. Chem. Rev. 2000, 100, 1565–1604.
[127]  Frenzel, U.; Müller, B.K.M.; Nuyken, O. Metathesis Polymerization of Cycloolefins. In Handbook of Polymer Synthesis, 2nd; Kricheldorf, H.R., Nuyken, O., Swift, G., Eds.; Marcel Dekker: New York, NY, USA, 2005; pp. 381–426.
[128]  Nuyken, O.; Schneider, M.; Frenzel, U. Metathesis Polymerization. In Encyclopedia of Polymer Science and Technology; Wiley: New York, NY, USA, 2012.
[129]  Lebedev, B.; Smirnova, N. Thermodynamics of cycloalkenes, of their bulk polymerization in the presence of metathesis catalysts and of polyalkenes. Macromol. Chem. Phys. 1994, 195, 35–63, doi:10.1002/macp.1994.021950105.
[130]  Cheridnichenko, V.M. The equilibrium polymerization of cyclic olefins. Polym. Sci. USSR 1978, 20, 1225–1233, doi:10.1016/0032-3950(78)90261-7.
[131]  Andrews, J.M.; Jones, F.R.; Semlyen, J.A. Equilibrium ring concentration and the statistical conformations of polymeric chains. 12. Cycles in molten and solid Nylon-6. Polymer 1974, 15, 420–424, doi:10.1016/0032-3861(74)90104-9.
[132]  Schrock, R.R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45, 3748–3759, doi:10.1002/anie.200600085.
[133]  Grubbs, R.H. Olefin metathesis catalysts for the preparation of molecules and materials (Nobel lecture). Angew. Chem. Int. Ed. 2006, 45, 3760–3765, doi:10.1002/anie.200600680.
[134]  Chauvin, Y. Olefin metathesis: The early days (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45, 3741–3747, doi:10.1002/anie.200601234.
[135]  Schrock, R.H. On the trail of metathesis catalysts. Organomet. Chem. 1986, 300, 249–262.
[136]  Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. A series of well-defined metathesis catalysts of [RuCl2(=CHR′)(PR3)2] and their reactions. Angew. Chem. Int. Ed. 1995, 34, 2039–2041.
[137]  Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org. Lett. 1999, 1, 953–956, doi:10.1021/ol990909q.
[138]  Love, J.A.; Morgan, J.P.; Tmka, T.M.; Grubbs, R.H. A practical and highly active ruthenium-based catalysts that effects the cross metathesis of acrylonitrile. Angew. Chem. Int. Ed. 2002, 41, 4035–4037, doi:10.1002/1521-3773(20021104)41:21<4035::AID-ANIE4035>3.0.CO;2-I.
[139]  Kingsbury, J.; Harrity, J.; Bonnitatebus, P.; Hoveyda, A.H. A recycable Ru-based metathesis catalysts. J. Am. Chem. Soc. 1999, 121, 791–799, doi:10.1021/ja983222u.
[140]  Halbach, T.S.; Mix, S.; Fischer, D.; Maechling, S.; Krause, J.O.; Sievers, C.; Blechert, S.; Nuyken, O.; Buchmeiser, M.R. Novel ruthenium-based metathesis catalysts containing electron withdrawing ligands, synthesis, immobilization and reactivity. J. Org. Chem. 2005, 70, 4687–4694, doi:10.1021/jo0477594.
[141]  Schrock, R.R. Ring-Opening Metathesis Polymerization. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; p. 141.
[142]  Trimmel, G.; Riegler, S.; Fuchs, G.; Slugovc, C.; Stelzer, F. Liquid crystalline polymers by metathesis polymerization. Adv. Polym. Sci. 2003, 176, 43–87.
[143]  Herisson, J.L.; Chauvin, Y. Catalysis of olefin transformation by tungsten complexes, telomerization of cyclic olefins in the presence of acyclic olefins. Makromol. Chem. 1971, 141, 161–176, doi:10.1002/macp.1971.021410112.
[144]  Grubbs, R.H. The development of functional group tolerant ROMP catalysts. J. Macromol. Sci. Chem. 1994, A31, 1829–1833.
[145]  Krause, J.O.; Nuyken, O.; Wurst, K.; Buchmeiser, M.R. Synthesis and reactivity of homogeneous and heterogoneous ruthenium-based metathesis catalysts containing electron withdrawing ligands. Chem. Eur. J. 2004, 10, 777–784, doi:10.1002/chem.200305031.
[146]  Hilf, S.; Kilbinger, A.F.M. Functional endgroups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 2009, 1, 537–546, doi:10.1038/nchem.347.
[147]  Inoue, S.; Aida, T. Catalysts for Living and Immortal Polymerization. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; pp. 197–215.
[148]  Kobayashi, S. Ring-Opening Polymerization Involving Oxidation-Reduction-Processes. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; pp. 337–350.
[149]  Inoue, S. Immortal polymerization: The outset, development, and application. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 2861–2871, doi:10.1002/1099-0518(20000815)38:16<2861::AID-POLA20>3.0.CO;2-1.
[150]  Helou, M.; Miserque, O.; Brusson, J.-M.; Carpentier, J.-F.; Guillaume, S.M. Ultraproductive, Zinc-Mediated, Immortal Ring-Opening Polymerization of Trimethylene Carbonate. Chem. Eur. J. 2008, 14, 8772–8775, doi:10.1002/chem.200801416.
[151]  Zhao, W.; Wang, Y.; Liu, X.; Cui, D. Facile synthesis of pendant- and α,ω-chain-end- functionalized polycarbonates via immortal polymerization by using salan lutetium alkyl precursor. Chem. Commun. 2012, 48, 4588–4590, doi:10.1039/c2cc31122d.
[152]  Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S.M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trionov, A. Metal-catalyzed immortal ring-opening of lactones, lactides and cyclic carbonates. Dalton Trans. 2010, 39, 8363–8376, doi:10.1039/c001226b.
[153]  Guillaume, S.M.; Carpentier, J.-F. Recent advances in metallo/organo-catalyzed immortal ring-opening polymerization of cyclic carbonates. Catal. Sci. Technol. 2012, 2, 898–906, doi:10.1039/c2cy00507g.
[154]  Amgoune, A.; Thomas, C.M.; Carpentier, J.-F. Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA. Macromol. Rapid Commun. 2007, 28, 693–697, doi:10.1002/marc.200600862.
[155]  Endo, M.; Aida, T.; Inoue, S. Immortal Polymerization of epsilon-caprolactone, initiated by aluminum porphyrin in the presence of alcohol. Macromolecules 2002, 20, 2982–2988, doi:10.1021/ma00178a005.
[156]  Xu, C.; Yu, I.; Mehrkhodavandi, P. Highly controlled immortal polymerization of β-butyrolactone by a dinuclear indium catalyst. Chem. Commun. 2012, 48, 6806–6808, doi:10.1039/c2cc33114d.
[157]  Kobayashi, S.; Tokunoh, M.; Saegusa, T. Cationic ring-opening polymerization of 2-phenyl-1,3,2-dioxaphosphepane, a seven-membered cyclic phosphonite. Macromolecules 1986, 19, 466–469, doi:10.1021/ma00156a040.
[158]  Kobayashi, S.; Saegusa, T. Alternating Copolymerization Involving Zwitterions. In Alternating Copolymers; Cowie, J.M.G., Ed.; Plenum: New York, NY, USA, 1985; pp. 189–239.
[159]  Allcock, H.R. Ring-Opening Polymerization in Phosphazene Chemistry. In Ring-Opening Polymerization; Brunelle, D.J., Ed.; Hanser Publishers: Munich, Germany, 1993; pp. 217–237.
[160]  Allcock, H.R. Current status of polyphosphazene chemistry. ACS Symp. Ser. 1988, 360, 250–267, doi:10.1021/bk-1988-0360.ch019.
[161]  Allcock, H.R. Phosphorus-Nitrogen-Compounds; Academic Press: New York, NY, USA, 1972.
[162]  v.Liebig, J. über Phosphorstickstoff. Ann. Chem. 1834, 11, 139.
[163]  Stokes, H.N. Chloronitrides of phosphorus. Am. Chem. J. 1897, 19, 782–796, doi:10.1021/ja02084a003.
[164]  D’Halluin, G.; de Jaeger, R.; Potin, P. Polydichlorophosphazenes: Synthèse à Partir De Cl3Pnp(O)Cl2. Bull. Soc. Chim. Belg. 1989, 98, 653–666.
[165]  Matyjaszewski, K.; Cypryk, M.; Dauth, J.; Montague, R.; White, M. New synthetic routes towards polyphosphazenes. Makromol. Chem. Macromol. Sym. 1992, 54–55, 13–30.
[166]  Matyjaszewski, K.; Franz, U.; Montague, R.A.; White, M.L. Synthesis of polyphosphazenes from phosphoranimines and phosphine azides. Polymer 1994, 35, 5005–5011, doi:10.1016/0032-3861(94)90656-4.
[167]  Franz, U.; Nuyken, O.; Matyjaszewski, K. Synthesis and characterization of poly(phenyl-p-tolylphosphazene), prepared via in situ polymerization of phenyl-p-tolylphosphine azide. Macromol. Rapid Comm. 1994, 15, 169–174, doi:10.1002/marc.1994.030150213.
[168]  Allcock, H.R. Chemistry and Applications of Polyphosphazenes; Wiley-Interscience: New York, NY, USA, 2003.
[169]  Neilson, R.H.; Wisian-Neilson, P. Poly(alkyl/arylphosphazenes) and their precursors. Chem. Rev. 1988, 88, 541–562, doi:10.1021/cr00085a005.
[170]  Allcock, H.R.; Kugel, R.L.; Valan, K.J. High molecular weight Poly(alkoxy and aryloxy-phosphazenes). Inorg. Chem. 1966, 5, 1709–1715, doi:10.1021/ic50044a016.
[171]  Allcock, H.R.; Kugel, R.L. High molecular weight Poly(diaminophosphazenes). Inorg. Chem. 1966, 5, 1716–1718, doi:10.1021/ic50044a017.
[172]  Rose, S.H. Synthesis of phosphonitrilic fluoroelastomers. J. Polym. Sci. 1968, 6, 837–839, doi:10.1002/pol.1968.110061203.
[173]  Singler, R.E.; Schneider, N.S.; Hagnauer, G.L. Polyphosphazenes: Synthesis—Properties—Applications. Polym. Eng. Sci. 1975, 15, 321–338, doi:10.1002/pen.760150502.
[174]  Kolich, C.H.; Klobucar, W.D.; Books, J.T. Process for surface treating phosphonitrilic fluoroelastomers. U.S. Patent 4,945,139 A, 31 July 1990.
[175]  Tate, D.P. Polyphosphazene elastomers. J. Polym. Sci. 1974, 48, 33–45.
[176]  Gettleman, L.; Farris, C.L.; Rawls, H.R.; LeBouef, R.J. Soft and firm denture liner for a composite denture and method of fabricating. U.S. Patent 4,432,730, 21 February 1984.
[177]  Blonsky, P.M.; Shriver, D.F.; Austin, P.E.; Allcock, H.R. Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 1984, 106, 6854–6855, doi:10.1021/ja00334a071.
[178]  Allcock, H.R.; O’Connor, S.J.M.; Olmeijer, D.L.; Napierala, M.E.; Cameron, C.G. Cation complexation and conductivity in crown ether bearing polyphosphazenes. Macromolecules 1996, 23, 7544–7552.
[179]  Fei, S.-T.; Allcock, H.R. Methoxyethoxyethoxyphosphazenes as Ionic Conductive Fire Retardant/Additives for Lithium Battery Systems. J. Power Source 2010, 19, 2082–2088.
[180]  Tang, H.; Pintauro, P.N. Polyphosphazene membranes. IV. Polymer morphology and proton conductivity in sulfonated poly[bis(3-methylphenoxy)phosphazene] films. J. Appl. Polym. Sci. 2001, 79, 49–59, doi:10.1002/1097-4628(20010103)79:1<49::AID-APP60>3.0.CO;2-J.
[181]  Allcock, H.R.; Kwon, S.; Riding, G.H.; Fitzpatrick, R.J.; Bennett, J.L. Hydrophilic Polyphosphazenes as Hydrogels: Radiation Crosslinking and Hydrogel Characteristics of Poly[bis(methoxyethoxyethoxy)phosphazene]. Biomaterials 1988, 9, 509–513, doi:10.1016/0142-9612(88)90046-4.
[182]  Kim, J.; Chun, C.; Kim, B.; Hong, J.M.; Cho, J.-K.; Lee, S.H.; Song, S.-C. Thermosensitive/magnetic poly(organophosphazene) hydrogel as a long-term magnetic resonance contrast platform. Biomaterials 2012, 33, 218–224, doi:10.1016/j.biomaterials.2011.09.033.
[183]  Allcock, H.R.; Pucher, S.R.; Turner, M.L.; Fitzpatrick, R.J. Poly(organophosphazenes) with Poly(alkyl ether) Side Groups: A Study of Their Water Solubility and the Swelling Characteristics of Their Hydrogels. Macromolecules 1992, 25, 5573–5577, doi:10.1021/ma00047a002.
[184]  Allcock, H.R.; Fitzpatrick, R.J.; Visscher, K.B. Thin layer grafts of Poly[bis(methoxyethoxy-ethoxy)-phosphazene] on organic polymer surfaces. Chem. Mater. 1992, 4, 775–780, doi:10.1021/cm00022a007.
[185]  Allcock, H.R.; Ambrosio, A.M. A. synthesis and characterization of pH-senstitive poly(organophosphazene) hydrogels. Biomaterials 1996, 17, 2295–2302, doi:10.1016/0142-9612(96)00073-7.
[186]  Allcock, H.R.; Pucher, S.R.; Scopelianos, A.G. Poly[amino acid ester)phosphazenes] as substrates for the controlled release of small molecules. Macromolecules 1994, 6, 516–524.
[187]  Deng, M.; Kumbar, S.G.; Wan, Y.; Toti, U.S.; Allcock, H.R.; Laurencin, C.T. Polyphosphazene polymers for tissue engineering: An analysis of material synthesis, characterization, and applications. Soft Matter 2010, 6, 3119–3132, doi:10.1039/b926402g.
[188]  Deng, M.; Kumbar, S.G.; Nair, L.S.; Arlin, L.; Weikel, A.L.; Allcock, H.R.; Laurencin, C.T. Biomimetic structures: Biological implications of dipeptide-substituted polyphosphazene–polyester blend nanofiber matrices for load-bearing bone regeneration. Adv. Funct. Mater. 2011, 21, 2641–2651, doi:10.1002/adfm.201100275.
[189]  Allcock, H.R.; Morozowich, N. Bioerodible polyphosphazenes and their medical potential. Polym. Chem. 2012, 3, 578–590, doi:10.1039/c1py00468a.
[190]  Manners, I.; Renner, G.; Nuyken, O.; Allcock, H.R. Poly(carbophosphazenes): A new class of inorganic-organic macromolecules. J. Am. Chem. Soc. 1989, 111, 5478–5480, doi:10.1021/ja00196a071.
[191]  Allcock, H.R.; Coley, S.M.; Manners, I.; Renner, G.; Nuyken, O. Poly[(aryloxy)carbophosphazenes]: Synthesis, properties, and thermal transition behavior. Macromolecules 1991, 24, 2024–2028, doi:10.1021/ma00008a048.
[192]  Dodge, J.A.; Manners, I.; Allcock, H.R.; Renner, G.; Nuyken, O. Poly(thiophospazenes): New inorganic macromolecules with backbone composed of phosphorus, nitrogen and sulfur atoms. J. Am. Chem. Soc. 1990, 112, 1268–1269, doi:10.1021/ja00159a070.
[193]  Manners, I.; Riding, G.H.; Dodge, J.A.; Allcock, H.R. Role of ring strain and steric hindrance in a new method of the synthesis of macrocycles and high polymer phosphazenes. J. Am. Chem. Soc. 1989, 111, 3067–3069, doi:10.1021/ja00190a052.
[194]  Voit, B. New developments in hyperbranched polymers. J. Polym. Sci. Polym. Chem. 2000, 38, 2505–2525, doi:10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413