全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Polymers  2013 

Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods

DOI: 10.3390/polym5010303

Keywords: pressure retarded osmosis, forward osmosis, membrane preparation, materials, methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO) and pressure retarded osmosis (PRO), has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC) membranes with a customized polysulfone (PSf) support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA) membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation.

References

[1]  Glater, J. The early history of reverse osmosis membrane development. Desalination 1998, 117, 297–309, doi:10.1016/S0011-9164(98)00122-2.
[2]  Nollet, A. Lecons de Physique Experimentale; Chez les Frères Guérin: Paris, France, 1748.
[3]  Traube, M. Experimente zur Theorie der Zellenbildung und Endosmose. Archiv für Anatomie Physologie und wisserschlaftliche Med. 1867, 87–165.
[4]  Loeb, S. The loeb-sourirajan membrane: How it came about. In Synthetic Membranes; American Chemical Society: Washington, DC, USA, 1981; Volume 153, pp. 1–9.
[5]  Cadotte, J.E. Reverse Osmosis Membrane. U.S. Patent 4,039,440, 2 August 1977.
[6]  Cadotte, J.E. Interfacially Synthesized Reverse Osmosis Membrane. U.S. Patent 4,277,344, 7 July 1981.
[7]  Cadotte, J.E. Reverse Osmosis Membrane. U.S. Patent 4,259,183, 31 March 1981.
[8]  Cadotte, J.E.; Petersen, R.J.; Larson, R.E.; Erickson, E.E. A new thin-film composite seawater reverse osmosis membrane. Desalination 1980, 32, 25–31, doi:10.1016/S0011-9164(00)86003-8.
[9]  Larson, R.E.; Cadotte, J.E.; Petersen, R.J. The FT-30 seawater reverse osmosis membrane—Element test results. Desalination 1981, 38, 473–483, doi:10.1016/S0011-9164(00)86092-0.
[10]  ACS Scifinder Home Page. Available online: http://www.cas.org/products/scifinder (accessed on 11 March 2013).
[11]  Sidney, L. Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations. J. Membr. Sci. 1976, 1, 49–63, doi:10.1016/S0376-7388(00)82257-7.
[12]  Loeb, S.; van Hessen, F.; Shahaf, D. Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs. J. Membr. Sci. 1976, 1, 249–269, doi:10.1016/S0376-7388(00)82271-1.
[13]  Statkraft Home Page. Available online: http://www.statkraft.no/jobb-og-karriere/ (accessed on 11 March 2013).
[14]  Skilhagen, S.E.; Dugstad, J.E.; Aaberg, R.J. Osmotic power—Power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination 2008, 220, 476–482, doi:10.1016/j.desal.2007.02.045.
[15]  Batchelder, G.W. Process for the Demineralization of Water. U.S. Patent 3,171,799, 3 February 1965.
[16]  Glew, D.N. Process for Liquid Recovery and Solution Concentration. U.S. Patent 3,216,930, 11 September 1965.
[17]  Frank, B.S. Desalination of Sea Water. U.S. Patent 3,670,897, 20 June 1972.
[18]  Kravath, R.E.; Davis, J.A. Desalination of sea water by direct osmosis. Desalination 1975, 16, 151–155, doi:10.1016/S0011-9164(00)82089-5.
[19]  Stache, K. Apparatus for Transforming Sea Water, Brackish Water, Polluted Water or the Like into a Nutritious Drink by Means of Osmosis. U.S. Patent 4,879,030, 11 July 1989.
[20]  Yaeli, J. Method and Apparatus for Processing Liquid Solutions of Suspensions Particularly Useful in the Desalination of Saline Water. U.S. Patent 5,098,575, 24 March 1992.
[21]  McGinnis, R. Osmotic Desalination Process. U.S. Patent 7,560,029 B2, 14 July 2009.
[22]  Ling, M.M.; Wang, K.Y.; Chung, T.-S. Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876, doi:10.1021/ie100438x.
[23]  McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 2005, 174, 1–11, doi:10.1016/j.desal.2004.11.002.
[24]  Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87, doi:10.1016/j.memsci.2006.05.048.
[25]  Cath, T.Y.; Gormly, S.; Beaudry, E.G.; Flynn, M.T.; Adams, V.D.; Childress, A.E. Membrane contactor processes for wastewater reclamation in space: Part I. Direct osmotic concentration as pretreatment for reverse osmosis. J. Membr. Sci. 2005, 257, 85–98, doi:10.1016/j.memsci.2004.08.039.
[26]  Hydration Technology Innovations Home Page. Available online: http://www.htiwater.com/ (accessed on 11 March 2013).
[27]  Dalla Rosa, M.; Giroux, F. Osmotic treatments (OT) and problems related to the solution management. J. Food Eng. 2001, 49, 223–236, doi:10.1016/S0260-8774(00)00216-8.
[28]  Wright, J.C.; Johnson, R.M.; Yum, S.I. Duros? osmotic pharmaceutical systems for parenteral & site-directed therapy. Drug Dev. Deliv. 2003, 3, 64–73.
[29]  Holloway, R.W.; Childress, A.E.; Dennett, K.E.; Cath, T.Y. Forward osmosis for concentration of anaerobic digester centrate. Water Res. 2007, 41, 4005–4014, doi:10.1016/j.watres.2007.05.054.
[30]  Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717, doi:10.1126/science.1200488.
[31]  Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21, doi:10.1016/j.memsci.2011.12.023.
[32]  Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81, doi:10.1016/j.desal.2010.12.019.
[33]  Hoover, L.A.; Phillip, W.A.; Tiraferri, A.; Yip, N.Y.; Elimelech, M. Forward with osmosis: Emerging applications for greater sustainability. Environ. Sci. Technol. 2011, 45, 9824–9830.
[34]  Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52, doi:10.1016/j.memsci.2009.07.006.
[35]  Achilli, A.; Cath, T.Y.; Marchand, E.A.; Childress, A.E. The forward osmosis membrane bioreactor: A low fouling alternative to mbr processes. Desalination 2009, 239, 10–21, doi:10.1016/j.desal.2008.02.022.
[36]  Chung, T.-S.; Li, X.; Ong, R.C.; Ge, Q.; Wang, H.; Han, G. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr. Opin. Chem. Eng. 2012, 1, 246–257, doi:10.1016/j.coche.2012.07.004.
[37]  Achilli, A.; Childress, A.E. Pressure retarded osmosis: From the vision of sidney loeb to the first prototype installation—Review. Desalination 2010, 261, 205–211, doi:10.1016/j.desal.2010.06.017.
[38]  Zhang, S.; Fu, F.; Chung, T.-S. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power. Chem. Eng. Sci. 2013, 87, 40–50, doi:10.1016/j.ces.2012.09.014.
[39]  Greentech Media Home Page. Available online: http://www.greentechmedia.com/ (accessed on 11 March 2013).
[40]  Mulder, M. Basic Principles of Membrane Technology; Kluver Academic Publishers: Dordrecht, The Netherlands, 1996.
[41]  Phillip, W.A.; Yong, J.S.; Elimelech, M. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environ. Sci. Technol. 2010, 44, 5170–5176, doi:10.1021/es100901n.
[42]  Loeb, S.; Titelman, L.; Korngold, E.; Freiman, J. Effect of porous support fabric on osmosis through a loeb-sourirajan type asymmetric membrane. J. Membr. Sci. 1997, 129, 243–249.
[43]  Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 2011, 367, 340–352, doi:10.1016/j.memsci.2010.11.014.
[44]  Gerstandt, K.; Peinemann, K.V.; Skilhagen, S.E.; Thorsen, T.; Holt, T. Membrane processes in energy supply for an osmotic power plant. Desalination 2008, 224, 64–70, doi:10.1016/j.desal.2007.02.080.
[45]  Chou, S.; Shi, L.; Wang, R.; Tang, C.Y.; Qiu, C.; Fane, A.G. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination 2010, 261, 365–372, doi:10.1016/j.desal.2010.06.027.
[46]  Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. High performance thin-film composite forward osmosis membrane. Environ. Sci. Technol. 2010, 44, 3812–3818.
[47]  Wei, J.; Qiu, C.; Tang, C.Y.; Wang, R.; Fane, A.G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 372, 292–302, doi:10.1016/j.memsci.2011.02.013.
[48]  Sukitpaneenit, P.; Chung, T.-S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ. Sci. Technol. 2012, 46, 7358–7365, doi:10.1021/es301559z.
[49]  Wang, R.; Shi, L.; Tang, C.Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 2010, 355, 158–167, doi:10.1016/j.memsci.2010.03.017.
[50]  Gray, G.T.; McCutcheon, J.R.; Elimelech, M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006, 197, 1–8, doi:10.1016/j.desal.2006.02.003.
[51]  McCutcheon, J.R.; Elimelech, M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Membr. Sci. 2006, 284, 237–247, doi:10.1016/j.memsci.2006.07.049.
[52]  Lee, K.L.; Baker, R.W.; Lonsdale, H.K. Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 1981, 8, 141–171, doi:10.1016/S0376-7388(00)82088-8.
[53]  Hancock, N.T.; Cath, T.Y. Solute coupled diffusion in osmotically driven membrane processes. Environ. Sci. Technol. 2009, 43, 6769–6775, doi:10.1021/es901132x.
[54]  Hancock, N.T.; Phillip, W.A.; Elimelech, M.; Cath, T.Y. Bidirectional permeation of electrolytes in osmotically driven membrane processes. Environ. Sci. Technol. 2011, 45, 10642–10651, doi:10.1021/es202608y.
[55]  Yong, J.S.; Phillip, W.A.; Elimelech, M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. J. Membr. Sci. 2012, 392–393, 9–17.
[56]  Zelman, A. Membrane permeability: Generalization of the reflection coefficient method of describing volume and solute flows. Biophys. J. 1972, 12, 414–419, doi:10.1016/S0006-3495(72)86093-4.
[57]  Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51, doi:10.1016/j.desal.2007.11.037.
[58]  Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471, doi:10.1021/cr800208y.
[59]  Seidel, A.; Elimelech, M. Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: Implications for fouling control. J. Membr. Sci. 2002, 203, 245–255, doi:10.1016/S0376-7388(02)00013-3.
[60]  Thorsen, T. Concentration polarisation by natural organic matter (NOM) in NF and UF. J. Membr. Sci. 2004, 233, 79–91, doi:10.1016/j.memsci.2004.01.003.
[61]  Mi, B.; Elimelech, M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environ. Sci. Technol. 2010, 44, 2022–2028, doi:10.1021/es903623r.
[62]  Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39, doi:10.1016/j.memsci.2010.08.036.
[63]  Boo, C.; Lee, S.; Elimelech, M.; Meng, Z.; Hong, S. Colloidal fouling in forward osmosis: Role of reverse salt diffusion. J. Membr. Sci. 2012, 390–391, 277–284.
[64]  Mi, B.; Elimelech, M. Chemical and physical aspects of organic fouling of forward osmosis membranes. J. Membr. Sci. 2008, 320, 292–302, doi:10.1016/j.memsci.2008.04.036.
[65]  Liu, Y.; Mi, B. Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation. J. Membr. Sci. 2012, 407–408, 136–144, doi:10.1016/j.memsci.2012.03.028.
[66]  Mi, B.; Elimelech, M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 2010, 348, 337–345, doi:10.1016/j.memsci.2009.11.021.
[67]  Carraher, C.E. Polymer Chemistry, 6th ed.; Marcel Dekker: New York, NY, USA, 2003.
[68]  McCutcheon, J.R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466, doi:10.1016/j.memsci.2008.03.021.
[69]  Saunders, K.J. Organic Polymer Chemistry, 2nd ed.; Chapman Hall: New York, NY, USA, 1988.
[70]  Wang, K.Y.; Chung, T.-S.; Qin, J.-J. Polybenzimidazole (pbi) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Membr. Sci. 2007, 300, 6–12, doi:10.1016/j.memsci.2007.05.035.
[71]  Sawyer, L.C.; Jones, R.S. Observations on the structure of first generation polybenzimidazole reverse osmosis membranes. J. Membr. Sci. 1984, 20, 147–166, doi:10.1016/S0376-7388(00)81329-0.
[72]  Solvay Specicality Polymers. Available online: http://catalog.ides.com/datasheet.aspx?I=42041&FMT=PDF&E=135275 (accessed on 11 March 2013).
[73]  Robertson, G.P.; Guiver, M.D.; Yoshikawa, M.; Brownstein, S. Structural determination of torlon? 4000t polyamide–imide by nmr spectroscopy. Polymer 2004, 45, 1111–1117, doi:10.1016/j.polymer.2003.12.029.
[74]  Setiawan, L.; Wang, R.; Li, K.; Fane, A.G. Fabrication of novel poly(amide–imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J. Membr. Sci. 2011, 369, 196–205, doi:10.1016/j.memsci.2010.11.067.
[75]  Wittbecker, E.L.; Morgan, P.W. Interfacial polycondensation. I. J. Polym. Sci. 1959, 40, 289–297, doi:10.1002/pol.1959.1204013701.
[76]  Morgan, P.W.; Kwolek, S.L. Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces. J. Polym. Sci. 1959, 40, 299–327, doi:10.1002/pol.1959.1204013702.
[77]  Alsvik, I.L.; H?gg, M.B. Preparation of thin film composite membranes with polyamide film on hydrophilic supports. J. Membr. Sci. 2013, 428, 225–231, doi:10.1016/j.memsci.2012.10.011.
[78]  Nilsen, T.-N.; Alsvik, I.L. Thin Film Composites. WO Patent 2011/152735, 8 December 2011.
[79]  Shi, L.; Chou, S.R.; Wang, R.; Fang, W.X.; Tang, C.Y.; Fane, A.G. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. J. Membr. Sci. 2011, 382, 116–123, doi:10.1016/j.memsci.2011.07.045.
[80]  Juhn Roh, I. Effect of the physicochemical properties on the permeation performance in fully aromatic crosslinked polyamide thin films. J. Appl. Polym. Sci. 2003, 87, 569–576, doi:10.1002/app.11472.
[81]  Baro?a, G.N.B.; Lim, J.; Jung, B. High performance thin film composite polyamide reverse osmosis membrane prepared via m-phenylenediamine and 2,2′-benzidinedisulfonic acid. Desalination 2012, 291, 69–77, doi:10.1016/j.desal.2012.02.001.
[82]  Son, S.H.; Jegal, J. Preparation and characterization of polyamide reverse-osmosis membranes with good chlorine tolerance. J. Appl. Polym. Sci. 2011, 120, 1245–1252, doi:10.1002/app.33111.
[83]  Shintani, T.; Shimazu, A.; Yahagi, S.; Matsuyama, H. Characterization of methyl-substituted polyamides used for reverse osmosis membranes by positron annihilation lifetime spectroscopy and md simulation. J. Appl. Polym. Sci. 2009, 113, 1757–1762, doi:10.1002/app.29885.
[84]  Liu, Y.; He, B.; Li, J.; Sanderson, R.D.; Li, L.; Zhang, S. Formation and structural evolution of biphenyl polyamide thin film on hollow fiber membrane during interfacial polymerization. J. Membr. Sci. 2011, 373, 98–106, doi:10.1016/j.memsci.2011.02.045.
[85]  Yu, S.; Liu, M.; Liu, X.; Gao, C. Performance enhancement in interfacially synthesized thin-film composite polyamide-urethane reverse osmosis membrane for seawater desalination. J. Membr. Sci. 2009, 342, 313–320.
[86]  Zhou, Y.; Yu, S.; Liu, M.; Chen, H.; Gao, C. Effect of mixed crosslinking agents on performance of thin-film-composite membranes. Desalination 2006, 192, 182–189.
[87]  Herron, J. Asymmetric Forward Osmosis Membranes. U.S. Patent 7,445,712, 4 November 2008.
[88]  Herron, J. Two-Layer Membrane. U.S. Patent 0,175,300 A1, 12 July 2012.
[89]  Smoke, J. HTI’s New Thin Film Forward Osmosis Membrane in Production. Available online: http://www.htiwater.com/news/press-room/content/2012/press-HTI-HTIThinFilmMembrane042512.pdf (accessed on 11 March 2013).
[90]  Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791–4797, doi:10.1021/la020920q.
[91]  Freger, V.; Srebnik, S. Mathematical model of charge and density distributions in interfacial polymerization of thin films. J. Appl. Polym. Sci. 2003, 88, 1162–1169, doi:10.1002/app.11716.
[92]  Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894, doi:10.1021/la048085v.
[93]  Schaep, J.; Vandecasteele, C. Evaluating the charge of nanofiltration membranes. J. Membr. Sci. 2001, 188, 129–136, doi:10.1016/S0376-7388(01)00368-4.
[94]  Pacheco, F.A.; Pinnau, I.; Reinhard, M.; Leckie, J.O. Characterization of isolated polyamide thin films of ro and nf membranes using novel tem techniques. J. Membr. Sci. 2010, 358, 51–59, doi:10.1016/j.memsci.2010.04.032.
[95]  Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148, doi:10.1016/j.memsci.2009.03.024.
[96]  Ghosh, A.K.; Jeong, B.-H.; Huang, X.; Hoek, E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45, doi:10.1016/j.memsci.2007.11.038.
[97]  Alsvik, I.L.; Katherine, Z.; Elimelech, M.; H?gg, M.-B. Polyamide formation on a cellulose triacetate support for osmotic membranes: Effect of linking molecules on membrane performance. Desalination 2013, 312, 2–9, doi:10.1016/j.desal.2012.09.019.
[98]  Ramakrishna, S. Introduction to Electrospinning and Nanofibers; World Scientific Publishing Co.: River Edge, NJ, USA, 2005.
[99]  Reneker, D.H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216, doi:10.1088/0957-4484/7/3/009.
[100]  He, J.-H. Electrospun Nanofibers and Their Applications; Smithers Rapra: Shrewsbury, UK, 2008.
[101]  Stranger, J.; Tucker, N.; Staiger, M. Electrospinning; Smithers Rapra: Shrevsbury, UK, 2009.
[102]  Bui, N.-N.; Lind, M.L.; Hoek, E.M.V.; McCutcheon, J.R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 2011, 385–386, 10–19.
[103]  Clausi, D.T.; Koros, W.J. Formation of defect-free polyimide hollow fiber membranes for gas separations. J. Membr. Sci. 2000, 167, 79–89, doi:10.1016/S0376-7388(99)00276-8.
[104]  Wang, K.Y.; Yang, Q.; Chung, T.-S.; Rajagopalan, R. Enhanced forward osmosis from chemically modified polybenzimidazole (pbi) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 2009, 64, 1577–1584, doi:10.1016/j.ces.2008.12.032.
[105]  Fang, W.; Wang, R.; Chou, S.; Setiawan, L.; Fane, A.G. Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers to enhance membrane properties of anti-scaling and anti-internal concentration polarization. J. Membr. Sci. 2012, 394–395, 140–150.
[106]  Arena, J.T.; McCloskey, B.; Freeman, B.D.; McCutcheon, J.R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Membr. Sci. 2011, 375, 55–62, doi:10.1016/j.memsci.2011.01.060.
[107]  Tiraferri, A.; Kang, Y.; Gianellis, E.P.; Elimelech, M. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. ACS Appl. Mater. Interf. 2012, 4, 5044–5053, doi:10.1021/am301532g.
[108]  Hoover, L.A.; Schiffman, J.D.; Elimelech, M. Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. Desalination 2013, 308, 73–81, doi:10.1016/j.desal.2012.07.019.
[109]  Phuntsho, S.; Shon, H.K.; Hong, S.; Lee, S.; Vigneswaran, S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluation the performance of fertilizer draw solutions. J. Membr. Sci. 2011, 375, 172–181, doi:10.1016/j.memsci.2011.03.038.
[110]  Achili, A.; Cath, T.Y.; Childress, A.E. Selection of inorganic-based draw solutions for forward osmosis applications. J. Membr. Sci. 2010, 364, 233–241, doi:10.1016/j.memsci.2010.08.010.
[111]  Ngu, H.Y.; Tang, W. Forward (direct) osmosis: A novel and prospective process for brine control. Water Environ. Found. 2006, 4345–4352.
[112]  Ling, M.M.; Chung, T.-S. Novel dual–stage FO system for sustainable protein enrichment using nanoparticles as intermediate draw solutes. J. Membr. Sci. 2011, 372, 201–209, doi:10.1016/j.memsci.2011.02.003.
[113]  Checkli, L.; Phuntsho, S.; Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Chahan, A. A review of draw solutes in forward osmosis process and their use in modern applications. Desalin. Water Treat. 2012, 43, 167–184, doi:10.1080/19443994.2012.672168.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413