We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.
References
[1]
Panagiotis, T.; Javier, P.; Vijay, R. Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger. Electrochem. Solid State Lett. 2008, 11, B113–B116, doi:10.1149/1.2916443.
[2]
Kinjo, T.; Murayama, Y.; Imai, K.; Munekata, T.; Hyodo, S. Relation between properties of polymer electrolyte membrane and molecular geometry of constituent molecules: Coarse-grained simulation. Kobunshi Ronbunshu 2010, 67, 187–191, doi:10.1295/koron.67.187.
[3]
Dorenbos, G.; Morohoshi, K. Chain architecture dependence of pore morphologies and water diffusion in grafted and block polymer electrolyte fuel cell membranes. Energy Environ. Sci. 2010, 3, 1326–1338, doi:10.1039/b924171j.
[4]
Dorenbos, G.; Morohoshi, K. Modeling gas permeation through membranes by kinetic Monte Carlo: Applications to H2, O2, and N2 in hydrated Nafion?. J. Chem. Phys. 2011, 134, 044133:1–044133:12.
[5]
Morohoshi, K.; Konishi, M. Elastic analysis of fuel cell polyelectrolyte membrane from coarse-grained molecular dynamics simulations. Kobunshi Ronbunshu 2011, 68, 642–646, doi:10.1295/koron.68.642.
[6]
Mauritz, K.A.; Moore, R.B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4535–4585, doi:10.1021/cr0207123.
[7]
Gierke, T.D.; Munn, G.E.; Wilson, F.C. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687–1704, doi:10.1002/pol.1981.180191103.
[8]
Kreuer, K.D.; Schuster, M.; Obliers, B.; Diat, O.; Traub, U.; Fuchs, A.; Klock, U.; Paddison, S.J.; Maier, J. Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells. J. Power Sources 2008, 178, 499–509, doi:10.1016/j.jpowsour.2007.11.011.
[9]
Elliot, J.A.; Hanna, S.; Elliot, A.M.S.; Cooley, G.E. Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes. Phys. Chem. Chem. Phys. 1999, 1, 4855–4863.
[10]
Vishnyakov, A.; Neimark, A.V. Molecular dynamics simulation of microstructure and molecular mobilities in swollen Nafion membranes. J. Phys. Chem. B 2001, 105, 9586–9594, doi:10.1021/jp0102567.
[11]
Pivovar, A.M.; Pivovar, B.S. Dynamic behavior of water within a polymer electrolyte fuel cell membrane at low hydration levels. J. Phys. Chem. B 2005, 109, 785–793, doi:10.1021/jp046029x.
[12]
Wescott, J.T.; Qi, Y.; Subramanian, L.; Capehart, T.W. Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes. J. Chem. Phys. 2006, 124, 134702:1–134702:14.
[13]
Yamamoto, S.; Hyodo, S. A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane Nafion. Polym. J. 2003, 35, 519–527, doi:10.1295/polymj.35.519.
[14]
Elliott, J.A.; Wu, D.; Paddison, S.J.; Moore, R.B. A unified morphology description of Nafion membranes from SAXS and mesoscale simulations. Soft Matter 2011, 7, 6820–6827, doi:10.1039/c1sm00002k.
[15]
Elliott, J.A.; Paddison, S.J. Modelling of morphology and proton transport in PFSA membranes. Phys. Chem. Chem. Phys. 2007, 9, 2602–2618.
[16]
Dorenbos, G.; Suga, Y. Simulation of equivalent weight dependence of Nafion morphologies and predicted trends regarding water diffusion. J. Membr. Sci. 2009, 330, 5–20.
[17]
Malek, K.; Eikerling, M.; Wang, Q.; Liu, Z.; Otsuka, S.; Akizuki, K.; Abe, M. Nanophase segregation and water dynamics in hydrated Nafion: Molecular modeling and experimental validation. J. Chem. Phys. 2008, 129, 204702–1.
[18]
Malek, K.; Eikerling, M.; Wang, Q.; Navessin, T.; Liu, Z. Self-organization in catalyst layers of polymer electrolyte fuel cells. J. Phys. Chem. C 2007, 111, 13627–13634.
[19]
Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086, doi:10.1063/1.458541.
[20]
Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435, doi:10.1063/1.474784.
[21]
McCoy, J.D.; Curro, J.G. The mapping of explicit atom onto united atom potentials. Macromolecules 1998, 31, 9362–9368, doi:10.1021/ma981060g.
[22]
Fukunaga, H.; Takimoto, J.; Doi, M. A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions. J. Chem. Phys. 2002, 116, 8183:1–8183:8.
[23]
Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364, doi:10.1021/jp980939v.
[24]
Sakai, T.; Takenaka, H.; Torikai, E. Gas diffusion in the dried and hydrated Nafions. J. Electrochem. Soc. 1986, 133, 88–92, doi:10.1149/1.2108551.
[25]
Haynes, W.M. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2010.
[26]
Sakai, T.; Takenaka, H.; Wakabayashi, N.; Kawami, Y.; Torikai, E. Gas permeation properties of solid polymer electrolyte (SPE) membranes. J. Electrochem. Soc. 1985, 132, 1328–1332, doi:10.1149/1.2114111.
[27]
Anderko, A.; Lencka, M.M. Modeling self-diffusion in multicomponent aqueous electrolyte systems in wide concentration ranges. Ind. Eng. Chem. Res. 1998, 37, 2878–2888, doi:10.1021/ie980001o.
[28]
Maxwell, J.C. A Treatise on Electricity and Magnetism; Oxford University Press: Cambridge, UK, 1881.
[29]
Satterfield, M.B.; Benziger, J.B. Viscoelastic properties of Nafion at elevated temperature and humidity. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 11–24, doi:10.1002/polb.21608.
[30]
OCTA Home Page. Available online: http://octa.jp (accessed on 16 January 2013).
[31]
Morris, D.R.; Sun, X. Water-sorption and transport properties of Nafion 117 H. J. Appl. Polym. Sci. 1993, 50, 1445–1452, doi:10.1002/app.1993.070500816.
[32]
Everaers, R.; Sukumaran, S.K.; Grest, G.S.; Svaneborg, C.; Sivasubramanian, A.; Kremer, K. Monte Carlo simulations and analysis of scattering from neutral and polyelectrolyte polymer and polymer-like systems. Science 2004, 303, 823–826, doi:10.1126/science.1091215.