全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Edges and Overlaps in Northwest Atlantic Phylogeography

DOI: 10.3390/d5020263

Keywords: phylogeography, Atlantic, bootstrapping, marine

Full-Text   Cite this paper   Add to My Lib

Abstract:

As marine environments change, the greatest ecological shifts—including resource usage and species interactions—are likely to take place in or near regions of biogeographic and phylogeographic transition. However, our understanding of where these transitional regions exist depends on the defining criteria. Here we evaluate phylogeographic transitions using a bootstrapping procedure that allows us to focus on either the strongest genetic transitions between a pair of contiguous populations, versus evaluation of transitions inclusive of the entire overlap between two intraspecific genetic lineages. We compiled data for the Atlantic coast of the United States, and evaluate taxa with short- and long-dispersing larval phases separately. Our results are largely concordant with previous biogeographic and phylogeographic analyses, indicating strong biotic change associated with the regions near Cape Cod, the Delmarva Peninsula, and eastern Florida. However, inclusive analysis of the entire range of sympatry for intraspecific lineages suggests that broad regions—the Mid-Atlantic Bight and eastern Florida–already harbor divergent intraspecific lineages, suggesting the potential for ecological evaluation of resource use between these lineages. This study establishes baseline information for tracking how such patterns change as predicted environmental changes take place.

References

[1]  Burton, R.S. Intraspecific phylogeography across the Point Conception biogeographic boundary. Evolution 1998, 52, 734–745, doi:10.2307/2411268.
[2]  Dawson, M.N. Phylogeography in coastal marine animals: a solution from California? J. Biogeogr. 2001, 28, 723–736, doi:10.1046/j.1365-2699.2001.00572.x.
[3]  Wares, J.P. Community Genetics in the Northwestern Atlantic Intertidal. Mol. Ecol. 2002, 11, 1131–1144, doi:10.1046/j.1365-294X.2002.01510.x.
[4]  Pelc, R.A.; Warner, R.R.; Gaines, S.D. Geographical patterns of genetic structure in marine species with contrasting life histories. J. Biogeogr. 2009, 36, 1881–1890, doi:10.1111/j.1365-2699.2009.02138.x.
[5]  Marko, P.B. “What’s larvae got to do with it?” Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 2004, 13, 597–611, doi:10.1046/j.1365-294X.2004.02096.x.
[6]  Puritz, J.B.; Toonen, R.J. Coastal pollution limits pelagic larval dispersal. Nature Comm. 2011, doi:10.1038/ncomms1238.
[7]  Pringle, J.M.; Wares, J.P. The maintenance of alongshore variation in allele frequency in a coastal ocean. Mar. Ecol. Prog. Series 2007, 335, 69–84, doi:10.3354/meps335069.
[8]  Eckman, J.E. Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 1996, 200, 207–237, doi:10.1016/S0022-0981(96)02644-5.
[9]  Emlet, R.B. Developmental mode and species geographic range in regular sea urchins (Echinodermata: Echinoidea). Evolution 1995, 49, 476–489, doi:10.2307/2410272.
[10]  Grantham, B.A.; Eckert, G.L.; Shanks, A.L. Dispersal potential of marine invertebrates in diverse habitats. Ecol. Appl. 2003, 13, 108–116, doi:10.1890/1051-0761(2003)013[0108:DPOMII]2.0.CO;2.
[11]  Havenhand, J.N. Evolutionary ecology of larval types. In Ecology of Marine Invertebrate Larvae; McEdward, L., Ed.; CRC Press: New York, NY, USA, 1995; pp. 79–122.
[12]  Levin, L.A.; Bridges, T.S. Pattern and Diversity in Reproduction and Development; McEdward, L., Ed.; CRC Press: New York, NY, USA, 1995; pp. 1–48.
[13]  McEdward, L. Ecology of Marine Invertebrate Larvae; CRC Press: New York, NY, USA, 1995; p. 464.
[14]  Baums, I.B.; Paris, C.B.; Chérubin, L.M. A bio-oceanographic filter to larval dispersal in a reef-building coral. Limn. Ocean. 2006, 51, 1969–1981, doi:10.4319/lo.2006.51.5.1969.
[15]  Connolly, S.R.; Roughgarden, J. A latitudinal gradient in northeast Pacific intertidal community structure: evidence for an oceanographically based synthesis of marine community theory. Amer. Nat. 1998, 151, 311–326.
[16]  Dawson, M.N. Phylogeography in coastal marine animals: a solution from California? J. Biogeogr. 2001, 28, 723–736, doi:10.1046/j.1365-2699.2001.00572.x.
[17]  Galindo, H.M.; Olson, D.B.; Palumbi, S.R. Seascape genetics: A coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol. 2006, 16, 1622–1626, doi:10.1016/j.cub.2006.06.052.
[18]  Selkoe, K.A.; Watson, J.R.; White, C.; Horin, T.B.; Iacchei, M.; Mitarai, S.; Siegel, D.A.; Gaines, S.D.; Toonen, R.J. Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 2010, 19, 3708–3726, doi:10.1111/j.1365-294X.2010.04658.x.
[19]  Zakas, C.; Binford, J.; Navarrete, S.A.; Wares, J.P. Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. Mar. Ecol. Prog. Ser. 2009, 394, 165–177, doi:10.3354/meps08265.
[20]  Carlton, J.T. Community assembly and historical biogeography in the Atlantic Ocean: the potential role of human-mediated dispersal vectors. Hydrobiologia 2003, 503, 1–8, doi:10.1023/B:HYDR.0000008479.90581.e1.
[21]  Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change. 2012, 2, 686–690.
[22]  Wiens, J.J. The niche, biogeography and species interactions. Phil. Trans. R. Soc. Lond. B 2011, 366, 2336–2350, doi:10.1098/rstb.2011.0059.
[23]  Sexton, J.P.; McIntyre, P.J.; Angert, A.L.; Rice, K.J. Evolution and ecology of species range limits. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 415–436, doi:10.1146/annurev.ecolsys.110308.120317.
[24]  Dawson, M.N.; Grosberg, R.K.; Stuart, Y.E.; Sanford, E. Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle Tetraclita rubescens. Mol. Ecol. 2010, 19, 1585–1605, doi:10.1111/j.1365-294X.2010.04588.x.
[25]  Zacherl, D.; Gaines, S.D. The limits to biogeographical distributions: Insights from the northward range extension of the marine snail, Kelletia kelletia. J. Biogeography 2003, 30, 913–924, doi:10.1046/j.1365-2699.2003.00899.x.
[26]  Sanford, E.; Roth, M.S.; Johns, G.C.; Wares, J.P.; Somero, G.N. Local selection and latitudinal variation in a marine predator-prey interaction. Science 2003, 300, 1135–1137, doi:10.1126/science.1083437.
[27]  Harley, C.D.G.; Pankey, M.S.; Wares, J.P.; Grosberg, R.K.; Wonham, M.J. The impacts of climate change in coastal systems. Ecol. Lett. 2006, 9, 228, doi:10.1111/j.1461-0248.2005.00871.x.
[28]  Norberg, J.; Urban, M.C.; Vellend, M.; Klausmeier, C.A.; Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nature Clim. Change 2012, 2, 747–751, doi:10.1038/nclimate1588.
[29]  Wethey, D.S. Biogeography, competition, and microclimate: the barnacle Chthamalus fragilis in New England. Int. Comp. Biol. 2002, 42, 872–880, doi:10.1093/icb/42.4.872.
[30]  Sanford, E.; Holzman, S.B.; Haney, R.A.; Rand, D.M.; Bertness, M.D. Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs. Ecology 2006, 87, 2882–2894, doi:10.1890/0012-9658(2006)87[2882:LTGFAT]2.0.CO;2.
[31]  Small, S.T.; Wares, J.P. Phylogeography and marine retention. Journal of Biogeography 2010, 37, 781–784, doi:10.1111/j.1365-2699.2009.02251.x.
[32]  Briggs, J.C. Marine zoogeography; McGraw Hill: New York, NY, USA, 1974.
[33]  Briggs, J.C.; Bowen, B.W. A realignment of marine biogeographic provinces with particular reference to fish distributions. J. Biogeogr. 2012, 39, 12–30, doi:10.1111/j.1365-2699.2011.02613.x.
[34]  Olivero, J.; Márquez, A.L.; Real, R. Integrating fuzzy logic and statistics to improve the reliable delimitation of biogeographic regions and transition zones. Syst. Biol. 2012, 26, 1–21.
[35]  Wares, J.P.; Gaines, S.D.; Cunningham, C.W. A Comparative Study of Asymmetric Migration Events across a Marine Biogeographic Boundary. Evolution 2001, 55, 295–306.
[36]  Blanchette, C.A.; Miner, C.M.; Raimondi, P.T.; Lohse, D.; Heady, K.E.K.; Broitman, B.R. Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr. 2008, 35, 1593–1607, doi:10.1111/j.1365-2699.2008.01913.x.
[37]  Newman, W.A.; Abbott, D.P.; Haderlie, E.C. Cirripedia; Morris, R.H., Ed.; Stanford University Press: Stanford, CA, USA, 1980; pp. 504–535.
[38]  Fortin, M.J.; Keitt, T.H.; Maurer, B.A.; Taper, M.L.; Kaufman, D.M.; Blackburn, T.M. Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 2005, 108, 7–17, doi:10.1111/j.0030-1299.2005.13146.x.
[39]  Kelly, M.W.; Sanford, E.; Grosberg, R.K. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. Roy. Soc. B 2012, 279, 349–356, doi:10.1098/rspb.2011.0542.
[40]  Blackburn, T.M.; Cassey, P.; Gaston, K.J. Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J. Anim. Ecol. 2006, 75, 1426–1439, doi:10.1111/j.1365-2656.2006.01167.x.
[41]  Byers, J.E.; Pringle, J.M. Going against the flow: retention, range limits and invasions in advective environments. Mar. Ecol. Prog. Ser. 2006, 313, 27–41, doi:10.3354/meps313027.
[42]  Case, T.J.; Taper, M.L. Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Amer. Nat. 2000, 155, 583–605, doi:10.1086/303351.
[43]  Gaines, S.D.; Lester, S.; Eckert, G.; Kinlan, B.P.; Sagarin, R.D.; Gaylord, B. Dispersal and geographic ranges in the sea. In Marine Macroecology; Witman, J.D., Roy, K., Eds.; University of Chicago Press: Chicago, IL, USA, 2009; pp. 227–249.
[44]  Gaston, K.J. The structure and dynamics of geographic ranges. In Oxford Series Ecology and Evolution; Oxford University Press: Oxford, UK, 2003; p. 266.
[45]  Gaylord, B.; Gaines, S.D. Temperature or transport? Range limits in marine species mediated solely by flow. Amer. Nat. 2000, 155, 769–789, doi:10.1086/303357.
[46]  Gilman, S.E. Experimental manipulations at the northern geographic range limit of an intertidal snail. Ph.D. Thesis, University of California, Davis, CA, USA, 2003.
[47]  Helmuth, B.; Mieszkowska, N.; Moore, P.; Hawkins, S.J. Living on the edge of two changing worlds: Forecasting the responses of rocky intertidal ecosystems to climate change. Ann. Rev. Ecol. Evol. Syst. 2006, 37, 373–404, doi:10.1146/annurev.ecolsys.37.091305.110149.
[48]  Holt, R.D. On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research 2003, 5, 159–178.
[49]  Jablonski, D.; Valentine, J.W. From regional to total geographic ranges: testing the relationship in Recent bivalves. Paleobiology 1990, 16, 126–142.
[50]  Kirkpatrick, M.; Barton, N.H. Evolution of a species’ range. The American Naturalist 1997, 150, 1–23.
[51]  Weersing, K.; Toonen, R.J. Population genetics, larval dispersal, and connectivity in marine systems. Mar. Ecol. Prog. Ser. 2009, 393, 1–12, doi:10.3354/meps08287.
[52]  Strathman, R.R. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Ann. Rev. Ecol. Syst. 1985, 16, 339–361.
[53]  Strathman, R.R. What controls the type of larval development. Bull. Mar. Sci. 1986, 39, 616–622.
[54]  Levin, L.A. Recent progress in understanding larval dispersal: new directions and digressions. Integr. Comp. Biol. 2006, 46, 282–297, doi:10.1093/icb/icj024.
[55]  Shanks, A.L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 2009, 216, 373–385.
[56]  Toews, D.P.L.; Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 2012, 21, 3907–3930, doi:10.1111/j.1365-294X.2012.05664.x.
[57]  R_Development_Core_Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009.
[58]  Irwin, D.E. Phylogeographic breaks without geographic barriers to gene flow. Evolution 2002, 56, 2383–2394.
[59]  Gilman, S.E. Life at the edge: An experimental study of a poleward range boundary. Oecologia 2006, 148, 270–279, doi:10.1007/s00442-006-0372-9.
[60]  Zakas, C.; Wares, J.P. Consequences of a poecilogonous life history for genetic structure in coastal populations of the polychaete Streblospio benedicti. Mol. Ecol. 2012, 21, 5447–5460, doi:10.1111/mec.12040.
[61]  Williams, P.H. Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc. R. Soc. Lond. B 1996, 263, 579–588, doi:10.1098/rspb.1996.0087.
[62]  Engle, V.D.; Summers, J.K. Latitudinal gradients in benthic community composition in Western Atlantic estuaries. J. Biogeogr. 1999, 26, 1007–1023, doi:10.1046/j.1365-2699.1999.00341.x.
[63]  Spalding, M.D.; Fox, H.E.; Halpern, B.S.; McManus, M.A.; Molnar, J.; Allen, G.R.; Davidson, N.; Jorge, Z.A.; Lombana, A.L.; Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 2007, 57, 573–583, doi:10.1641/B570707.
[64]  Avise, J.C. Phylogeography; Harvard University Press: Cambridge, MA, USA, 2000.
[65]  Hickerson, M.J.; Meyer, C.P. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach. BMC Evol. Biol. 2008, 8, 322, doi:10.1186/1471-2148-8-322.
[66]  Nielsen, R.; Beaumont, M.A. Statistical inferences in phylogeography. Mol. Ecol. 2009, 18, 1034–1047.
[67]  Huang, W.; Takebayashi, N.; Qi, Y.; Hickerson, M.J. MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity. BMC Bioinformatics 2011, 12, 1.
[68]  Wares, J.P. Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J. Crust. Biol. 2001, 21, 1007–1013, doi:10.1651/0278-0372(2001)021[1007:IVAGII]2.0.CO;2.
[69]  Bell, T.M. The maintenance of genetic diversity in the Atlantic isopod, Idotea balthica. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2009.
[70]  Endler, J.A. Problems in distinguishing historical from ecological factors in Biogeography. Amer. Zoolo. 1982, 22, 441–452.
[71]  Endler, J.A. Geographic Variation, Speciation, and Clines; Princeton University Press: Princeton, NJ, USA, 1977; p. 246.
[72]  Barry, J.P.; Baxter, C.H.; Sagarin, R.D.; Gilman, S.E. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 1995, 267, 672–675, doi:10.1126/science.267.5198.672.
[73]  Southward, A.J. Forty years of changes in species composition and population density of barnacles on a rocky shore near Plymouth, England, UK. J. Mar. Biol. Assoc. UK 1991, 71, 495–514, doi:10.1017/S002531540005311X.
[74]  Perry, A.L.; Low, P.J.; Ellis, J.R.; Reynolds, J.D. Climate change and distribution shifts in marine fishes. Science 2005, 308, 1912–1915, doi:10.1126/science.1111322.
[75]  Hoffmann, A.A.; Daborn, P.J. Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecol. Lett. 2007, 10, 63–76, doi:10.1111/j.1461-0248.2006.00985.x.
[76]  Meirmans, P.G. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 2006, 60, 2399–2402.
[77]  Dawson, M.N. Parallel phylogeographic structure in ecologically similar sympatric sister taxa. Mol. Ecol. 2012, 21, 987–1004, doi:10.1111/j.1365-294X.2011.05417.x.
[78]  Kelly, R.P.; Palumbi, S.R. Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community. PloS One 2010, 5, e8594.
[79]  Ilves, K.; Huang, W.; Wares, J.P.; Hickerson, M.J. Colonization and/or mitochondrial selective sweeps across the Atlantic intertidal assemblage revealed by multi-taxa approximate Bayesian computation. Mol. Ecol. 2010, 19, 4505–4519, doi:10.1111/j.1365-294X.2010.04790.x.
[80]  Ling, S.D.; Johnson, C.R.; Ridgway, K.; Hobday, A.J.; Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biol. 2009, 15, 719–731, doi:10.1111/j.1365-2486.2008.01734.x.
[81]  Wernberg, T.; Russell, B.D.; Moore, P.J.; Ling, S.D.; Smale, D.A.; Campbell, A.; Coleman, M.A.; Steinberg, P.D.; Kendrick, G.A.; Connell, S.D. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. exp. mar. Biol. Ecol. 2011, 400, 7–16, doi:10.1016/j.jembe.2011.02.021.
[82]  Williams, J.W.; Kharouba, H.M.; Veloz, S.; Vellend, M.; McLachlan, J.; Liu, Z.Y.; Otto-Bliesner, B.; He, F. The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecol. Biogeogr. 2012, 22, 289–301.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413