全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

DOI: 10.3390/d5010001

Keywords: Anthropogenic fires, Apiformes, biodiversity, body size, Bolivian Andes, human disturbance, insect pollinators, Lepidoptera, rain forest, species traits

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths) with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

References

[1]  Barthlott, W.; Lauer, W.; Placke, A. Global Distribution of Species Diversity in Vascular Plants: Towards A World Map Of Phytodiversity (Globale Verteilung der Artenvielfalt H?herer Pflanzen: Vorarbeiten zu einer Weltkarte der Phytodiversit?t). Erdkunde 1996, 50, 317–327.
[2]  Mittermeier, R.A.; Myers, N.; Thomsen, J.B.; da Fonseca, G.A.; Olivieri, S. Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conserv. Biol. 1998, 12, 516–520.
[3]  IPCC. Summary for Policymakers. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007.
[4]  Webster, B.D.; Steeves, T.A. Morphogenesis in Pteridium aquilinum (L.) Kuhn-General morphology and growth habit. Phytomorphology 1958, 8, 30–41.
[5]  Hartig, K.; Beck, E. The bracken fern (Pteridium arachnoideum (Kaulf.) Maxon) Dilemma in the Andes of southern Ecuador. Ecotropica 2003, 9, 3–13.
[6]  Silva Matos, D.M.; Belinato, T.A. Interference of Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) on the establishment of rainforest trees. Braz. J. Biol. 2010, 70, 311–316, doi:10.1590/S1519-69842010000200012.
[7]  Rodrigues, R.R.; Martins, S.V. High Diversity Forest Restoration in Degraded Areas: Methods and Projects In Brazil; Nova Publishers: S?o Paulo, Brazil, 2007.
[8]  Bawa, K.S. Plant-pollinator interactions in tropical rain forests. Annu. Rev. Ecol. Syst. 1990, 21, 399–422.
[9]  Schemske, D.W.; Mittelbach, G.G.; Cornell, H.V.; Sobel, J.M.; Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009, 40, 245–269, doi:10.1146/annurev.ecolsys.39.110707.173430.
[10]  Knight, T.M.; Steets, J.A.; Vamosi, J.C.; Mazer, S.J.; Burd, M.; Campbell, D.R.; Dudash, M.R.; Johnston, M.O.; Mitchell, R.J.; Ashman, T.L. Pollen limitation of plant reproduction: Pattern and process. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 467–497, doi:10.1146/annurev.ecolsys.36.102403.115320.
[11]  Hagen, M.; Kraemer, M. Agricultural surroundings support flower–visitor networks in an afrotropical rain forest. Biol. Conserv. 2010, 143, 1654–1663, doi:10.1016/j.biocon.2010.03.036.
[12]  Winfree, R.; Griswold, T.; Kremen, C. Effect of human disturbance on bee communities in a forested ecosystem. Conserv. Biol. 2007, 21, 213–223, doi:10.1111/j.1523-1739.2006.00574.x.
[13]  Aguilar, R.; Ashworth, L.; Galetto, L.; Aizen, M.A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 2006, 9, 968–980.
[14]  Steffan-Dewenter, I.; Münzenberg, U.; Bürger, C.; Thies, C.; Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 2002, 83, 1421–1432, doi:10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2.
[15]  Hamer, K.C.; Hill, J.K. Scale-dependent effects of habitat disturbance on species richness in tropical forests. Conserv. Biol. 2000, 14, 1435–1440, doi:10.1046/j.1523-1739.2000.99417.x.
[16]  Quesada, M.; Sanchez-Azofeifa, G.A.; Alvarez-A?orve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession and management of tropical dry forests in the Americas: Review and new perspectives. Forest Ecol. Manag. 2009, 258, 1014–1024, doi:10.1016/j.foreco.2009.06.023.
[17]  Heithaus, E.R. Community structure of neotropical flower visiting bees and wasps: Diversity and phenology. Ecology 1979, 60, 190–202, doi:10.2307/1936480.
[18]  Potts, S.G.; Vulliamy, B.; Dafni, A.; Ne’eman, G.; Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 2003, 84, 2628–2642, doi:10.1890/02-0136.
[19]  Breitbach, N.; Tillmann, S.; Schleuning, M.; Grünewald, C.; Laube, I.; Steffan-Dewenter, I.; B?hning-Gaese, K. Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia 2012, 168, 425–437, doi:10.1007/s00442-011-2090-1.
[20]  Bishop, J.A.; Armbruster, W.S. Thermoregulatory abilities of Alaskan bees: Effects of size, phylogeny and ecology. Funct. Ecol. 1999, 13, 711–724, doi:10.1046/j.1365-2435.1999.00351.x.
[21]  Pereboom, J.J.M.; Biesmeijer, J.C. Thermal constraints for stingless bee foragers: The importance of body size and coloration. Oecologia 2003, 137, 42–50.
[22]  Schulze, C.H.; Linsenmair, K.E.; Fiedler, K. Understorey versus canopy: Patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant. Ecol. 2001, 153, 133–152, doi:10.1023/A:1017589711553.
[23]  Hill, J.K.; Hamer, K.C.; Tangah, J.; Dawood, M. Ecology of tropical butterflies in rainforest gaps. Oecologia 2001, 128, 294–302.
[24]  Handel, S.N. The role of plant-animal mutualisms in the design and restoration of natural communities. In Restoration Ecology and Sustainable Development; Urbanska, K.M., Webb, N.R., Edwards, P.J., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 111–132.
[25]  Dixon, K.W. Pollination and restoration. Science 2009, 325, 571–573, doi:10.1126/science.1176295.
[26]  Molina Carpio, J. Régimen de precipitación en la cuenca de Huarinilla-Cotapata, La Paz-Bolivia. Ecol. Boliv. 2005, 40, 43–55.
[27]  Toler, T.R.; Evans, E.W.; Tepedino, V.J. Pan-trapping for bees (Hymenoptera: Apiformes) in Utah’s west desert: The importance of color diversity. Pan-Pac. Entomol. 2005, 81, 103–113.
[28]  Roulston, T.H.; Smith, S.A.; Brewster, A.L. A Comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. J. Kansas Entomol. Soc. 2007, 80, 179–181, doi:10.2317/0022-8567(2007)80[179:ACOPTA]2.0.CO;2.
[29]  Schleuning, M.; Farwig, N.; Peters, M.K.; Bergsdorf, T.; Bleher, B.; Brandl, R.; Dalitz, H.; Fischer, G.; Freund, W.; Gikungu, M.W. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest. PloS One 2011, 6, e27785.
[30]  Campbell, J.W.; Hanula, J.L. Efficiency of malaise traps and colored pan traps for collecting flower visiting insects from three forested ecosystems. J. Insect Cons. 2007, 11, 399–408, doi:10.1007/s10841-006-9055-4.
[31]  R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008.
[32]  Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community ecology package, 2011. In R package version 2.0-1.
[33]  Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D. The R development core team (2011) nlme: Linear and nonlinear mixed effects models, 2011. In R package version 3.1-106.
[34]  Dray, S.; Dufour, A.B. The Ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20.
[35]  Ewers, R.M.; Didham, R.K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 2006, 81, 117–142.
[36]  Legendre, P.; Galzin, R.; Harmelin-Vivien, M.L. Relating behaviour to habitat: Solutions to the fourth-corner problem. Ecology 1997, 78, 547–562.
[37]  Dray, S.; Legendre, P. Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology 2008, 89, 3400–3412, doi:10.1890/08-0349.1.
[38]  Otero, J.T.; Sandino, J.C. Capture rates of male Euglossine bees across a human intervention gradient, Chocó region, Colombia. Biotropica 2006, 35, 520–529.
[39]  Liow, L.H.; Sodhi, N.S.; Elmqvist, T. Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. J. Appl. Ecol. 2001, 38, 180–192, doi:10.1046/j.1365-2664.2001.00582.x.
[40]  Tonhasca, A., Jr.; Blackmer, J.L.; Albuquerque, G.S. Abundance and diversity of Euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 2002, 34, 416–422.
[41]  Zayed, A.; Whitfield, C.W. A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2008, 105, 3421–3426, doi:10.1073/pnas.0800107105.
[42]  Brosi, B.J.; Daily, G.C.; Ehrlich, P.R. Bee community shifts with landscape context in a tropical countryside. Ecol. Appl. 2007, 17, 418–430, doi:10.1890/06-0029.
[43]  Brosi, B.J.; Daily, G.C.; Shih, T.M.; Oviedo, F.; Durán, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 2008, 45, 773–783.
[44]  Wilms, W.; Wiechers, B. Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 1997, 28, 339–355, doi:10.1051/apido:19970602.
[45]  Stefanescu, C.; Herrando, S.; Páramo, F. Butterfly species richness in the north-west Mediterranean basin: The role of natural and human-induced factors. J. Biogeogr. 2004, 31, 905–915, doi:10.1111/j.1365-2699.2004.01088.x.
[46]  Hill, J.K.; Hamer, K.C.; Lace, L.A.; Banham, W.M.T. Effects of selective logging on tropical forest butterflies on Buru, Indonesia. J. Appl. Ecol. 1995, 32, 754–760, doi:10.2307/2404815.
[47]  Kitahara, M.; Fujii, K. Biodiversity and community structure of temperate butterfly species within a gradient of human disturbance: An analysis based on the concept of generalist vs. specialist strategies. Res. Popul. Ecol. 1994, 36, 187–199, doi:10.1007/BF02514935.
[48]  Hogsden, K.L.; Hutchinson, T.C. Butterfly assemblages along a human disturbance gradient in Ontario, Canada. Can. J. Zoolog. 2004, 82, 739–748.
[49]  Potts, S.G.; Dafni, A.; Ne’eman, G. Pollination of a core flowering shrub species in Mediterranean phrygana: variation in pollinator diversity, abundance and effectiveness in response to fire. Oikos 2003, 92, 71–80.
[50]  Tylianakis, J.M.; Klein, A.-M.; Tscharntke, T. Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 2005, 86, 3296–3302.
[51]  Bawa, K.S.; Bullock, S.H.; Perry, D.R.; Coville, R.E.; Grayum, M.H. Reproductive biology of tropical lowland rain forest trees. II. Pollination systems. Am. J. Bot. 1985, 72, 346–356, doi:10.2307/2443527.
[52]  Powell, A.H.; Powell, G.V. Population dynamics of male Euglossine bees in Amazonian forest fragments. Biotropica 1987, 19, 176–179, doi:10.2307/2388742.
[53]  Janzen, D.H. Euglossine Bees as long-distance pollinators of tropical plants. Science 1971, 171, 203.
[54]  Brehm, G.; Homeier, J.; Fiedler, K. Beta diversity of Geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Divers. Distrib. 2003, 9, 351–366, doi:10.1046/j.1472-4642.2003.00023.x.
[55]  Kambach, S. Differences in diversity and composition of pollinator guilds between montane forest and arrested succession in BoliviaDiploma Thesis, University of Halle-Wittenberg, 2012.
[56]  Gathmann, A.; Greiler, H.-J.; Tscharntke, T. Trap-nesting bees and wasps colonizing set-aside fields: Succession and body size, Management by cutting and sowing. Oecologia 1994, 98, 8–14.
[57]  Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596.
[58]  Bommarco, R.; Biesmeijer, J.C.; Meyer, B.; Potts, S.G.; P?yry, J.; Roberts, S.P.M.; Steffan-Dewenter, I.; ?ckinger, E. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. P. Roy. Soc. B-Biol. Sci. 2010, 277, 2075–2082.
[59]  Thomas, C.D.; Hill, J.K.; Lewis, O.T. Evolutionary consequences of habitat fragmentation in a localized butterfly. J. Anim. Ecol. 1998, 67, 485–497.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133