全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Diversity  2013 

Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics

DOI: 10.3390/d5010051

Keywords: landscape genetics, mantel test, causal modeling, simulation, CDPOP

Full-Text   Cite this paper   Add to My Lib

Abstract:

The predominant analytical approach to associate landscape patterns with gene flow processes is based on the association of cost distances with genetic distances between individuals. Mantel and partial Mantel tests have been the dominant statistical tools used to correlate cost distances and genetic distances in landscape genetics. However, the inherent high correlation among alternative resistance models results in a high risk of spurious correlations using simple Mantel tests. Several refinements, including causal modeling, have been developed to reduce the risk of affirming spurious correlations and to assist model selection. However, the evaluation of these approaches has been incomplete in several respects. To demonstrate the general reliability of the causal modeling approach with Mantel tests, it must be shown to be able to correctly identify a wide range of landscape resistance models as the correct drivers relative to alternative hypotheses. The objectives of this study were to (1) evaluate the effectiveness of the originally published causal modeling framework to support the correct model and reject alternative hypotheses of isolation by distance and isolation by barriers and to (2) evaluate the effectiveness of causal modeling involving direct competition of all hypotheses to support the correct model and reject all alternative landscape resistance models. We found that partial Mantel tests have very low Type II error rates, but elevated Type I error rates. This leads to frequent identification of support for spurious correlations between alternative resistance hypotheses and genetic distance, independent of the true resistance model. The frequency in which this occurs is directly related to the degree of correlation between true and alternative resistance models. We propose an improvement based on the relative support of the causal modeling diagnostic tests.

References

[1]  Manel, S.; Schwartz, M.K.; Luikart, G.; Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol.?2003, 18, 189–197, doi:10.1016/S0169-5347(03)00008-9.
[2]  Holderegger, R.; Wagner, H.H. Landscape genetics. Bioscience?2008, 58, 199–207, doi:10.1641/B580306.
[3]  Balkenhol, N.; Gugerli, F.; Cushman, S.A.; Waits, L.P.; Coulon, A.; Arntzen, J.W.; Holderegger, R.; Wagner, H.H.; Arens, P.; Campagne, P.; et al. Identifying future research needs in landscape genetics: where to from here? Landscape Ecol.?2009, 24, 455–463, doi:10.1007/s10980-009-9334-z.
[4]  Segelbacher, G.; Cushman, S.A.; Epperson, B.K.; Fortin, M.-J.; Francois, O.; Hardy, O.J.; Holderegger, R.; Manel, S. Applications of landscape genetics in conservation biology: concepts and challenges. Conserv. Genet.?2010, 11, 375–385, doi:10.1007/s10592-009-0044-5.
[5]  Spear, S.F.; Peterson, C.R.; Matocq, M.D.; Storfer, A. Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol. Ecol.?2005, 14, 2553–2564, doi:10.1111/j.1365-294X.2005.02573.x.
[6]  Cushman, S.A.; McKelvey, K.S.; Hayden, J.; Schwartz, M.K. Gene-flow in complex landscapes: testing multiple models with causal modeling. Am. Nat.?2006, 168, 486–499, doi:10.1086/506976.
[7]  McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA?2007, 104, 19885–19890, doi:10.1073/pnas.0706568104.
[8]  Pérez-Espona, S.; Pérez-Barbería, F.J.; McLeod, J.E.; Jiggins, C.D.; Gordon, I.J.; Pemberton, J.M. Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol. Ecol.?2008, 17, 981–996, doi:10.1111/j.1365-294X.2007.03629.x.
[9]  Lee-Yaw, J.A.; Davidson, A.; McRae, B.H.; Green, D.M. Do landscape processes predict phylogeographic patterns in the wood frog? Mol. Ecol.?2009, 18, 1863–1874, doi:10.1111/j.1365-294X.2009.04152.x.
[10]  Shirk, A.; Wallin, D.O.; Cushman, S.A.; Rice, R.C.; Warheit, C. Inferring landscape effects on gene flow: a new multi-scale model selection framework. Mol. Ecol.?2010, 19, 3603–1619, doi:10.1111/j.1365-294X.2010.04745.x.
[11]  Wasserman, T.N.; Cushman, S.A.; Schwartz, M.K.; Wallin, D.O. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecol.?2010, 25, 1601–1612, doi:10.1007/s10980-010-9525-7.
[12]  Murphy, M.A.; Evans, J.S.; Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology?2010, 91, 252–261, doi:10.1890/08-0879.1.
[13]  Krist, F.J.; Brown, D.G. GIS modeling of paleo-indian period caribou migrations and viewsheds in northeastern lower Michigan. Photogramm. Eng. Rem. S.?1994, 60, 1129–1137.
[14]  Walker, R.; Craighead, L. Analyzing wildlife movement corridors in Montana using GIS. Proceedings of the Esri User Conference '97. Available online: http://gis.Esri.com/library/userconf/proc97/proc97/to150/pap116/p116.htm (accessed on 15 February 2013).
[15]  McRae, B.H. Isolation by resistance. Evolution?2006, 60, 1551–1561.
[16]  Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res.?1967, 27, 209–220.
[17]  Smouse, P.E.; Long, J.C.; Sokal, R.R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool.?1986, 35, 627–632, doi:10.2307/2413122.
[18]  Raufaste, N.; Rousset, F. Are partial Mantel tests adequate? Evolution?2001, 55, 1703–1705.
[19]  Castellano, S.; Balletto, E. Is the partial Mantel test inadequate? Evolution?2002, 56, 1871–1873.
[20]  Legendre, P.; Fortin, M.-J. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol. Ecol. Res.?2010, 10, 831–844, doi:10.1111/j.1755-0998.2010.02866.x.
[21]  Guillot, G.; Rousset, F. On the use of simple and partial Mantel tests in the presence of spatial auto-correlation. ?2011, arXi, 1112.0651v1.
[22]  Meirmans, P.G. The trouble with isolation by distance. Mol. Ecol.?2012, 21, 2839–2846, doi:10.1111/j.1365-294X.2012.05578.x.
[23]  Amos, J.; Bennet, A.F.; Mac Nally, R.; Newell, G.; Radford, J.Q.; Pavlova, A.; Thompson, J.; White, M.; Sunnucks, P. Predicting landscape genetic consequences of habitat loss, fragmentation and mobility for species of woodland birds. Plos One?2012, 7, e30888.
[24]  Legendre, P.; Troussellier, M. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol. Oceanogr.?1988, 33, 1055–1067, doi:10.4319/lo.1988.33.5.1055.
[25]  Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology?1993, 74, 1659–1673, doi:10.2307/1939924.
[26]  Cushman, S.A.; Landguth, E.L. Spurious correlations and inference in landscape genetics. Mol. Ecol.?2010, 19, 3592–3602, doi:10.1111/j.1365-294X.2010.04656.x.
[27]  Cushman, S.A.; Lewis, J. Movement behavior explains genetic differentiation in American black bear. Landscape Ecol.?2010, 25, 1613–1625, doi:10.1007/s10980-010-9534-6.
[28]  Wasserman, T.N.; Cushman, S.A.; Shirk, A.S.; Landguth, E.L.; Littell, J.S. Simulating the effects of climate change on population connectivity of American marten (Mates americana) in the northern Rocky Mountains, USA. Landscape Ecol.?2012, 27, 211–225, doi:10.1007/s10980-011-9653-8.
[29]  Wasserman, T.N.; Cushman, S.A.; Littell, J.S.; Landguth, E.L. Population connectivity and genetic diversity of American marten (Martes Americana) in the United States northern Rocky Mountains in a climate change context. Conserv. Genet.?2012, doi:10.1007/s10592-012-0336-z.
[30]  Landguth, E.L.; Cushman, S.A. CDPOP: An individual-based, cost-distance spatial population genetics model. Mol. Ecol. Resour.?2010, 10, 156–161, doi:10.1111/j.1755-0998.2009.02719.x.
[31]  Short Bull, R.A.; Cushman, S.A.; Mace, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, M.K.; McKelvey, K.S.; Allendorf, F.W.; Luikart, G. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol.?2011, 20, 1092–1107.
[32]  Cushman, S.A.; Landguth, E.L. Multi-species connectivity in the northern Rocky Mountains. Ecol Model.?2012, 231, 101–112, doi:10.1016/j.ecolmodel.2012.02.011.
[33]  Cushman, S.A.; Landguth, E.L. Ecological associations, dispersal ability and landscape connectivity in the northern Rocky Mountains. Available online: http://www.fs.fed.us/rm/pubs/rmrs_rp090.pdf (accessed on 15 February 2013).
[34]  Cushman, S.A.; Landguth, E.L.; Shirk, A.J. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landscape Ecol.?2012, 27, 369–380, doi:10.1007/s10980-011-9693-0.
[35]  Balloux, F. EASYPOP (Version 1.7): A computer program for population genetics simulations. J. Hered.?2001, 92, 301–302, doi:10.1093/jhered/92.3.301.
[36]  Manel, S.; Berthoud, F.; Bellemain, E.; Gaudeul, M.; Luikart, G.; Swenson, J.E.; Waits, L.P.; Taberlet, P.; Consortium, I. A new individual-based spatial approach for identifying genetic discontinuities in natural populations. Mol. Ecol. Resour.?2007, 16, 2031–2043, doi:10.1111/j.1365-294X.2007.03293.x.
[37]  Landguth, E.L.; Cushman, S.A.; Luikart, G.; Murphy, M.A.; Schwartz, M.K.; McKelvey, K.S. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol.?2010, 19, 4179–4191, doi:10.1111/j.1365-294X.2010.04808.x.
[38]  Jaquiéry, J.; Broquet, T.; Hirzel, A.H.; Yearsley, J.; Perrin, N. Inferring landscape effects on dispersal from genetic distances: How far can we go? Mol. Ecol.?2011, 20, 692–705, doi:10.1111/j.1365-294X.2010.04966.x.
[39]  Bowcock, A.M.; Ruiz-Linares, A.; Tomfohrde, J.; Minch, E.; Kidd, J.R.; Cavalli-Sforza, L.L. High resolution of human evolutionary trees with polymorphic micorsatellites. Nature?1994, 368, 455–457, doi:10.1038/368455a0.
[40]  ESRI (Environmental Systems Research Incorporated). ArcGIS. ESRI, Redlands, CA, USA, 2003.
[41]  Mantel, N.A. The detection of disease clustering and a generalized regression approach. Cancer Res.?1967, 27, 209–220.
[42]  Goslee, S.C.; Urban, D.L. The ecodist package for dissimilarity-based analysis of ecological data. J. Statist. Softw.?2007, 22, 1–19.
[43]  R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. Available online: http://www.R-project.org (accessed on 15 February 2013). ISBN 3-900051-07-0.
[44]  Balkenhol, N.; Waits, L.P.; Dezzani, R.J. Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography?2009, 32, 818–830, doi:10.1111/j.1600-0587.2009.05807.x.
[45]  Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic patterns. Mol. Ecol. Resour.?2012, 12, 276–284, doi:10.1111/j.1755-0998.2011.03077.x.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413