|
Between-Subject and Within-Subject Model Mixtures for Classifying HIV Treatment ResponseDOI: 10.3968/j.pam.1925252820120402.s0801 Abstract: We present a method for using longitudinal data to classify individuals into clinically-relevant population subgroups. This is achieved by treating ``subgroup'' as a categorical covariate whose value is unknown for each individual, and predicting its value using mixtures of models that represent ``typical'' longitudinal data from each subgroup. Under a nonlinear mixed effects model framework, two types of model mixtures are presented, both of which have their advantages. Following illustrative simulations, longitudinal viral load data for HIV-positive patients is used to predict whether they are responding -- completely, partially or not at all -- to a new drug treatment.
|